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Abstract

In the paper, we analyze the extragradient method with regularization for finding a common
element of the solution set of the split feasibility and fixed point problems of pseudo-
contractive mappings. Moreover we propose the extragradient with regularization iterative
method due to a generalized Ishikawa-type and Mann-type iterative methods. The weak con-
vergence theorems of the sequences generated by the proposed iterative methods are obtained
under the certain assumptions on pseudo-contractive mappings in real Hilbert spaces. Finally,
we give the numerical example to demonstrate the effectiveness of our theoretical results and
compare its behavior with the iterative methods of Ceng et al. (Fixed Point Theory Appl 192,
2015).

Keywords Extragradient method - Regularization - Pseudocontractive mapping - Split
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1 Introduction

Throughout the paper, we assume H; and H are real Hilbert spaces with inner product (-, -)
and norm || - ||. Let C and Q be nonempty closed convex subsets of H; and H», respectively.
Denote the strong convergence by — and weak convergence by —. A mapping S : C — C
is a nonexpansive mapping if

|ISx — Syl < |lx —y|| forall x,yeC.

On the other hand, in a real Hilbert space, a mapping 7 : C — C is called pseudo-
contractive if,

(Tx =Ty, x —y) < |lx — y||* forall x,yeC.
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It is well-known that T is pseudo-contractive if and only if
I1Tx = Tyl* < llx = yI* + I = T)x — (I = T)y|* forall x,yeC.
The fixed point problem for the mapping 7 is the following:
find x € C suchthat Tx = x.

Denote by F(T) = {x € C : Tx = x} the set of solutions of the fixed point problem.
In 1953, Mann [31] introduced the Mann iterative method as follows:

Xn41 = A —op)xy +a,Tx,, forallneN, (1)

where {«,} C [0, 1].
And then in 1974, Ishikawa [28] introduced the Ishikawa iterative method as follows:

yn = —ap)x, +a,Txy,,
Xpt1 = A = B)xy + BuTyn, forallmeN,

where {a,}, {Bn} C [0, 1].
Next, Noor [33] introduced three-step iterative method as follows:

2

yn = —ap)x, +a,Txy,,
Zn = (1 = B)xp + BuTyn, 3)
Xnt1 = (1 —y)xn +yvuTz,, foralln e N,

where {ay,}, {8}, {yn} C [0, 1]. Clearly, Mann and Ishikawa iterative methods are special
cases of Noor iteration.
The above iterative methods have been extensively studied by many authors for approxi-
mating fixed points of nonlinear mappings and solutions of nonlinear operator equations.
On the other hand, the split feasibility problems (SFP) have the following property:

find x € C suchthat Ax € Q.

where A : H| — H» is abounded linear operator. Denote ) = {x € C : Ax € Q} the set of
solutions of the split feasibility problems (SFP)and I = {x € F(T)NC : Ax € F(S)N Q}
the set of solutions of the split feasibility and fixed point problems where 7 : C — C and
S:0— 0.

Censor and Elfving [21] introduced the split feasibility problems (SFP) in finite-dimension
Hilbert spaces for modeling inverse problems which arise in phase retrievals and medical
image reconstruction [1]. The split feasibility problems (SFP) can also be applied to intensity-
modulated radiation therapy (IMRT) [22—24] and have been used in signal processing and
image reconstruction, see [1,2,22,34,37,39,46].

The original iterative method for solving the split feasibility problems (SFP) is given in
[21] under assuming the existence of the inverse of A. We know that the finding of the inverse
of A is difficult so this iterative method has not become popular. A more popular iterative
method for solving the split feasibility problems (SFP) is the CQ iterative method which is
introduced by Byrne [21] because it is found to be a gradient-projection method (GPM) in the
convex minimization and a special case of the proximal forward-backward splitting method
[27].

Many researchers have studied the C Q iterative method and its variant form, refer to
[10,12,17,36,38,40,41,45]. In 2010, Xu [38] applied a Mann-type iterative method to the
split feasibility problems (SFP) and proposed an average C Q iterative method which was
proven to be weakly convergent to a solution of the split feasibility problems (SFP).
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In 1976, Korpelevich [30] introduced the extra-gradient iterative method for solving a
saddle point problems such that many researchers have used and applied this iterative method
for solving various problems: see e.g. [3-6,11,13,17-20]

For solving the split feasibility and fixed point problems, in 2012, Ceng et al. [12] pro-
posed an iterative method by combining the extragradient iterative method with the idea of
Nadezhkina and Takahashi [32] and proved that the sequences generated by their iterative
method converge weakly to an element of the solutions of the split feasibility and fixed point
problems.

In 2014, Yao et al. [42] studied the split feasibility and fixed point problems. They [42]
constructed an iterative method as the following:

xo € C chosen arbitrarily,
yn = Pc(apu 4 (1 — ) (xy — 8A*(I — SPp)Axy)), “4)
Xp1 = (1= B)yu + BT (A = Y)yn + ¥uTyy), forallneN,

where {o}, {Bn}, {yn} are three real number sequences in (0, 1) and § is a constant in
O, W). They [42] proved that the sequences generated by their iterative method converge
strongly to solutions of the split feasibility and fixed point problems.

Very recently, Ceng et al. [25] had the motivation and inspiration from the work of Ceng
etal. [12] and Yao et al. [42]. They proposed an Ishikawa-type extragradient iterative method

for pseudo-contractive mappings with Lipschitz assumption on 7. For given xo € C,

Yn = Pc(xp — Ay A*(I — SPg)Axy),

Zn = Pc(xy — )‘nA*(I - SPQ)Ayn)a

wy = (1 —ap)zy +ayTzy,

Xnt1 =0 = Bzy + B Tw,, forallneN.

(&)

Moreover, they proposed a Mann-type extragradient iterative method for pseudo-contractive
mappings without Lipschitz assumption on T as the following:

yn = Pc(xy, — 1 A*(I — SPQ)Axn),
Zn = Pc(xy — M A*(I — SPg)Ayn), (6)
Xp+1 = (1 —ap)zn + @y Tz,, forall n € N,

where S : Q — Q is a nonexpansive mapping, A : Hy — H is a bounded linear operator
with its adjoint A* and they [25] proved that their sequences generated by their iterative
methods converge weakly to solutions of the split feasibility and fixed point problems.

Throughout this research, we assume that the solution set of the split feasibility problems
are nonempty. Let f : H] — R be a continuous differentiable function, the minimization
problem:

1
min f(x) := ~[|Ax — PgAx|? @)
xeC 2
is ill-posed. Therefore, Xu [38] considered the following Tikhonov regularized problem:
L 1 2 1 2
min f%(x) := = [|Ax — PoAx||” + zo|x]|~, ®)
xeC 2 2

where @ > 0 is the regularization parameter.
We observe that the gradient

Vx)=Vf@) +al =AU — Pg)A+al

is (a + ||A||2)—Lipschitz continuous and «-strongly monotone.
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It is worth to emphasize that the traditional Tikhonov regularization is usually used to
solve the ill-posed optimization problems. The advantage of a regularization method is its
possible strong convergence to the minimum-norm solution of the optimization problems:
see e.g. [7,15-17].

In 2012, Ceng et al. [11] proposed iterative method by combining the regularization
method and extragradient method due to Nadezhkina and Takahashi [32] and proved that the
sequence generated by their iterative method converges weakly to an element of the solution
of the split feasibility and fixed point problems.

Motivated and inspired by the research mentioned above, we introduce the iterative
methods by using a combination of an extragradient method with regularization due to a
generalized Ishikawa iterative method for solving the split feasibility and the fixed point
problems of pseudo-contractive mappings with Lipschitz assumption on C and nonexpan-
sive mappings on Q. On the other hand, we avoid Lipschitzian condition by a proposed
iterative method which combine an extragradient method with regularization due to a gen-
eralized Mann iterative method for solving the split feasibility and fixed point problems.
We establish weak convergence theorems for sequences generated by the proposed iterative
processes. Finally, we give numerical results and compare its behavior with an Ishikawa-type
extragradient iterative method and a Mann-type extragradient iterative method of Ceng et al.
[25].

2 Preliminaries
Let C be a closed convex subset of a Hilbert space H. The mapping P. : H — C is called
the metric projection if Pcx is the unique point in C with the property:

|lx — Pcx|| = min{|lx — y|| : y € C} forall x € H.

Some properties of the metric projection which we use in our main results appeared in the
following proposition.

Proposition1 Let x € H and z € C. Then

(1) z=Pex & (x—z,y—2) <0 forall yeC;
(2) z=Pex & |lx —z|I> < lx = yII* = lly — zl|* forall y€C;
(3) (x —y, Pcx — Pcy) = |Pcx — Pey|)? forall y € C.

We also need other properties of nonlinear operators as the following:
a nonlinear operator 7 : H — H is said to be

(1) L-Lipschitzian if there exists L > 0 such that
ITx —Ty|l < Lllx —yl|l, forall x,y € H,

if L =1, then T is called nonexpansive;
(2) firmly nonexpansive if 27 — I is nonexpansive, or equivalently,

(x—y,Tx —Ty) > |[Tx — Ty||>, forallx,ye H,

alternatively, T is firmly nonexpansive if and only if 7 can be expressed as
1
T=—-(+Y9),
2( +3S5)

where S : H — H is nonexpansive;
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(3) monotone if
(x—y,Tx —Ty)>0, forall x,y e H;
(4) B-strongly monotone with 8 > 0, if
(x —y,Tx —Ty) > Bllx — y||>, forall x,y € H;
(5) v-inverse strongly monotone (v-ism), with v > 0, if
(x —y,Tx —Ty) > v|Tx — Ty||* forallx,ye H.
It is well-known that the metric projection Pc : H — C is firmly nonexpansive, that is,
(x =y, Pcx — Pcy) = ||Pcx — Peyl?
& |IPcx = Peyl® < llx = yI> = I = Po)x = (I = Po)yI®, Vx,y e H. (9)

Forall x, y,z € H, we have

lx + 1% = Ixl® +20x, y) + Iyl (10)
lax + (1 —a)yl? = allx|* + (1 —)lyl* —a( —a)|x — y|* where « € [0, 1],
(11)

and
loex + By + yzl* = allx|I> + Bllyl*
+yllzl* — eBlix — yII* —ayllx —zI* — Bylly — zl%, (12)
where o, B,y € [0, 1] withae + 8+ y = 1.
Proposition2 Let T : H — H be a given mapping. Then

(1) T is nonexpansive if and only if the complement I — T is %-ism;

(2) if T is v-ism, then yT is ﬁ-ism, fory > 0;

(3) T is averaged if and only if the complement I — T is v-ism for some v > % Indeed, for
a € (0,1), T is a-averaged if and only if I — T is i—ism.

Proposition 3 [25] Let T be a pseudo-contractive mapping with the nonempty fixed point set
F(T), then the following conclusion holds:

(Ty —y, Ty —=x*) < |Ty — I, forall yeC, x* e F(T).

In general, many researches have assumed pseudo-contractive mappings with L-Lipschitzian
with L > 1. Cengetal. [25] overcome the L-Lipschitzian property by assuming the condition
of the pseudo-contractive mapping on 7':

(Ty —y, Ty —x*) <0, forall yeC, x*e€ F(T). (13)

In our main result, we use the demiclosedness principle for pseudo-contractive mappings.

Definition1 Let 7 : H — H be a mapping. A mapping / — T is said to be demiclosed at
zero if for any sequence {x,} C H with x,—x, and x,, — Tx,, — 0, we have x = Tx.

Lemma 1 [47] Let H be a real Hilbert space, C be a closed convex subset of H. Let T :
C — C be a continuous pseudo-contractive mapping. Then
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(1) F(T) is a closed convex subset of C;
(2) I — T is demiclosed at zero.

Moreover, we use a weak-cluster point of the sequence {x,}, denote by

ww (x,) = [x : x,;—x for some subsequence {x,,l_} of {xn}] .

Lemma 2 [29] Let H be a real Hilbert space and {x,} be a bounded sequence in H such that
there exists a nonempty closed convex set C of H satisfying:

(1) forevery w € C, lim,_ o || X, — w|| exists;
(2) each weak-cluster point of the sequence {x,} is in C.

Then {x,} converges weakly to a point in C.

Lemma 3 [25] Let Q be a nonempty closed convex subset of a Hilbert space H and S : Q —
Q be a nonexpansive mapping. Set V fS = A*(I — SPg)A, then

x =y, VI S5x) = Vi) = IV S — VS (14)

2]1A12

We can use the fixed point algorithms to solve the split feasibility problems on the basis
of the following observation.

Let A > 0 and assume that x* € I". Then Ax* € Q which implies that (I — Pp)Ax™ =0,
and thus, (I — Pp)Ax* = 0. Hence, we have the fixed point equation x* = (I — XA*( —
Pg)A)x*. Requiring that x* € C, we consider the fixed point equation

x* = Pc(I — MA*(I — Pg)A)x™ = Pc(I — AV f)x*. (15)

It is proven in [38] that the solutions of the fixed point equation (15) are exactly the solutions
of the split feasibility problems; namely, for given x* € C, x* solves the split feasibility
problems if and only if x* solves the fixed point equation (15).

3 Main results

We propose the generalized Ishikawa-type extragradient with regularization iterative method
for pseudo-contractive mappings with Lipschitz assumption and the generalized Mann-type
extragradient with regularization iterative method for pseudo-contractive mappings without
Lipschitz assumption for solving the split feasibility and fixed point problems.

3.1 The generalized Ishikawa-type extragradient with regularization iterative
method for pseudo-contractive mappings with Lipschitz assumption

Theorem 1 Let Hy and Hj be two real Hilbert spaces and let C and Q be two nonempty
closed convex sets of Hy and Hy, respectively. Let A : Hy — Hy be a bounded linear
operator with its adjoint A*. Let S : Q — Q be a nonexpansive mapping and T : C — C
be an L-Lipschitzian pseudo-contractive mapping. For xo € H arbitrarily, let {x,} be a
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sequence defined by

yn = Pc (xn — (A" (I — SPg)A +(xn1)xn) >

Zn = Pc (Xn — M(A*(I — SPQ)A + anD)yy) .

wy = (1 —op)zy +0nTzy, (16)
sn = (1 = Bu)zn + BuTwy,

Xn41 = (1 - yn)zn + VnTsn,

where {1} C la, b] for some a,b € (0, #IIA\P)’ {an} C (0,00), X2 a, < o0 and

O<a<yy<b<fp<c<o,<dc< —— L Then the sequence {x,} generated

VLZ+1+1+L2°

by algorithm (16) converges weakly to an element of I.

Proof Firstly, we will show that the sequence {x,} is bounded. Let x* € I'. Then x* €
F(T)NCand Ax* € F(S)NQ.Setv, = PoAxy,up = X, —hy(A*(I —=SPg)Axp+a, 1) xy,
VS = A*(I — SPg)A + a,l and V f5 = A*(I — SPp)A, for all n > 0. Since Pc is
nonexpansive, we have

lyn = x*I1% = 1 Peun — x*I* < llun — x*|?
= llxn = An (A*(I = SPQ)A + ap T) 3y — x*|?
= llxn = ¥ + 2hn (v — x*, A*(SP — 1) Axa)
+ MIIA*(SPo — DAxy|* = dnotn 21y — X*) + AnotnXn, xn).  (17)
From A is a linear operator with its adjoint A*, we obtain that
(xp — x*, A*(Sv, — Axy)) = (Ax, — Ax™, Sv, — Axy)

= (Ax,, — Ax™ + Sv,, — Ax,, — Sv, + Axy, Sv, — Axy)
= (Sv, — Ax*, Su, — Axy) — ||Sv, — Axp % (18)

In combination with (11), we get that

1
(Svw — Ax*, Sup = Axy) = = (ISvn — AX|I + |1Svy — Axa | — | Axy — Ax*||).

(19)
Since S is a nonexpansive mapping and (9), we have
| Sv, — Ax*||? = |SPgAx, — SPoAx*|
< | PgAx, — PoAx*|?
< | Axy — Ax*|? = [log — Axa % (20)
In view of (18), (19) and (20), it follows that
(x, — x*, A*(Sv, — Axy))
= %(nSvn — AX*|* + [|Svn — Axy |1> — [[Axy — Ax¥|*) — [|Svy — Axy|?
< %(nAxn — Ax*|* = v, — AX*[* + [ Svy — Axy||* — [|Ax, — Ax*[|?)
— [|Sv, — Ax||?
1 w2 L 2
= =5 llv = AXT7 = J1ISv, — Ax . (1)
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Substituting (21) into (18) and using the assumption on {1, }, these imply that
lyn = x*1% = llxn = X1 + AL I AN 1Svn — Axp > + 200 (3 — X*, A*(Sv, — Axp))+
— An0tu (2(uy — x*) + AnOnXp, Xp)

< 2y — x* |2+ A2 AN Svn — Axy |
1 2 1 2
+ 2 [ == lvw — Axal1? = S 11Svp — Ayl
2 2
— Anlp (2(14}1 - x*) + Anotp Xy, xn)
= llxn — x* 1% = Anllve — Axa > = 2n (1 = 2| AID IS, — Axy ||
- )\nan(z(un - x*) + AnOnXn, xn)
< o — X% = Ant (2 — X*) + An@uXn, Xn). (22)
Now, we will show that

Say, _ Say, _ 1 Soty _ Soty 2
(V2R (x) = Voo (y), x y>27a,,+2||A||2”Vf () =V W (23)

By Lemma 3, we have

1

(x—y. V5@ = VS = ATAT IV 35 = VS I>.

Observe that

(atn + 2| APV £59 (x) — V 5 (), x — y)

(e + 21417 (eallx = Y12 + (V50 = V5. x = )

apllx = yI? + (VI ) = VS (), x = y) + 2enll A7 [1x — yII°
+21AIHV S @) = VS (). x — y)

> opllx — Y7 + an (VL) = VS (). x — y) + 20| AP [1x — y]?
+IVS@ = VW

> aylx — yI? 4 20, (VFS@x) = VS x =) + IV @) = VS (I?

= llon(x =) + V£S5 ) = VS

= IV f5 (x) = V5 ().

By Proposition 1(2) one gets that

lzn = X* 17 < lxn = 2 VL5 ) = X1 = [1xn — 2V F5 (90) — za1?
= [lxn = X*1* = 2hn (0 — X5, VL5 () + AV 5 )1
= {xn = zall® + 2000 — 200 VL5 ) = 22 IV £59 ) |1
= [lxn = x* 1% = %0 = 2l + 20 (V59 (ya), x* = 20)

= otw = 2712 = tw = 2al® = 22 (V5 () = V5 (%), 3y = x7)
AV L5 ), X5 = ) (5 ), = 20))

< %0 — X1 = X0 — zall> + 220 (V £5 (3), Y0 — 2)
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= lxn = x*1* = %0 = Yall* = lyn = 2al?
+ 2000 = A VS ) = Yo 2w — V).
Combining (23) with Proposition 1(1), we have
(X = AV £S5 (V) = Y2 2n = Yn)
= (0 = M VL5 C0n) = Y 20— Yn) + 2 (VL5 ) = V5 (30), 20— yn)
< 2 (V5 ) = V5 () 20 — )
< AllVF5 ) = V5 o) llzn — vl
< An(en + 21 A1 %0 = yalllzn — yull- (24)
The hypothesis of {A,} and (24), it follows that
lzn = X*II* < lotw = x*[1* = 1xn — yull* = lyn — zal®
+ 2000 = AV 5 (Un) = s 20 — V)
<l = x*I% = llxn = Yall* = llyn — 2all®
+ 20 ety + 21 AID 150 = Yullllzn — yull
< llxn = x*I% = 1xn = Yall> = 1yn — 2all* + 20 — yull?
+ 2 (o + 20 A1 (x50 — Yl
= llxn — x*1* = (1 = 25 (tn + 211 AID?|x0 — yul?
< llaxn — x*|1%. (25)
Likewise, we get that
lzn = X*[1* = llxa — x*II1* = (1 = Aj (@n + 21 AP 20 — Yall. (26)
Since T is a pseudo-contractive mapping, we obtain that
1T zn — X1 < llzw — x*1* + llzn — Tzl 27)
and
ITwy — x*1* = IT((1 — 0w)zn + 0nTzn) — x*||?
< (1 = 0)(@n — x*) + 0u(Tzy — x|
+ 1= 0w)an + 0T 2y — T((1 — 0)zn + oxTz) > (28)

Again using (11) and T is an L-Lipschitzian pseudo-contractive mapping, these imply that

(1 —0o)zn + 04Tz — T((1 —0y)zn + UnTZn)”z

=0 =0 (zy — T —0w)zn +0,Tzy) + 0, (Tzy — T((1 —04)zn +UnTZn)||2
= =o)llzn = T((1 —0op)zn + UnTZn)”z +oullTzn — T((1 —op)zn + UnTZn)”z

— on(1 —0w)llzn — Tzl
< (1 —ollza — T((1 — 0)zn + 0nTz) 1> + 0u L |20 — Tzal*
— on(1 —0w)llza — Tzl
=0 =o)lzn — T((A = 0)zn + 0uTzn) 1> — 0w (1 — 05 — LA)lzn — Tz

(29)
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Combining with (11) and (27), we get that
(1 = 04)(zn — x*) + 00 (T2 — x|
= (I —ollzn = x* I + oul| Tzn — x*1* = 0a(1 = 0wz — Tzal®
< (1 =on)llzn — x*1* + oulllzn — x*I* + l|zn — Tzall*]
— on(l —ow)llzn — Tzall?
= llza = x*I* + 0 |20 — Tzl
By (29) and (30), it follows that
ITw, — x*|* = IT((1 = 0)zn + 0nTzn) — x*|?
<1 =0 (@ = x%) + 0 (Tzp — x|
+ (1 = 00)zn + 00Tz — T((1 = 03)zn + 0xTz) |1
= llza = x* |7 + (1 = ow)llzn — T((1 — 04)zn + ouTza)II?
— 0,(1 =20, — 2L |z, — Tzall>-
Likewise, since T is a pseudo-contractive mapping, we get that
ITsn = x*1 < llsn — x*[1* + 50 — Tsull*.
Consider
ITsn = x*1* = IT((1 = Bu)zn + BuTwy) — x*|?
<1 = B)(zn — x*) + Bu(Twy — x|
+ 111 = Ba)zn + BaTwy — T (1 = B)zn + BaTwa)lI?,
and by combining with (11) and (31), we get that
(1= Bu)(@n — x*) + Bu(Twy, — x|
=1 = B)llzn — x* 12+ Bull Twy — x*1* = Bu(1 = B)llzn — Tw |
< (1= Bllza —x* I + Bn (Izn — x* 1> + (1 = o) |z — Twa?
—0u(1 =204 — 07 L)|zn — Tzall*) = Bu(1 = B)llzn — Twy |

(30)

€2V

(32)

(33)

< llzn = x*1* = Bu(on — B)llzn — Twyll* = Buon(l — 20, — 0 2L |20 — Tzall*.

Again using (11) and T is an L-Lipschitzian pseudo-contractive mapping , we get that

(1= Bw)zn + BuTwn — T((1 = Bu)zn + BuTwn)|I*

(34)

=10 =B)(zn —T((1 = Bzn + BuTwy) + B (Tw, — T((1 — Bp)zn + ,BnTwn)||2
=0 =Bllzn =TI = Bu)zn + ,BnTwn)”z + BullTwy — T((1 — Bp)zn + ,BnTwn)||2

— Bu(1 = B)llzn — Twyl?

= (1= B)llza — T((1 = Bu)zn + BaTw) > + BuL*wn — (1 — B)zn + B Twy)|I*

— Bu(1 = B)llzn — Twyll*.
1

Since w, = (1 —0,)zy + 0,7z, and 0, < d < —————, we have

VLIH14+1+L2’
lwy — (1= B)zn — BuTwall® = 1(1 = 00)zn + 00Tz — (1 — Bu)zn — B Twpll?
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= Billzn — Twall® + 07120 — Tzl

— 2Bu0ulzn — Twn, zn — T2p)
= Billzn — Twal® + 0Nz — Tzall?

— 2Bh00{zn — Twy + Tz — Tzn, 2n — T2n)
= Billzn — Twal* + 0, llza — Tzul?

— 2Bu0nllzn — Tznll* — 28000 (T 20 — Twn, 20 — Tzn)
< Billzn — Twal* + o llzn — Tzall

— 2Buoullzn — Tznll* + 2B20ull Tzn — TwallllTzn — zall
< Blizn — Twall* + 01z — Tzal?

— 2Buoullzn — Tznll* + 280 Lllzn — TzallllTzn — zall
= Billzn — Twal* + 07 llzn — Tzal?

— 2B40n(1 — 0y L) |zn — Tzl
< Billzn — Twall®> + 0, lzn — Tzall* (36)

Combining (35) with (36) obtain that

(1= Bw)zn + BaTwy — T((1 — Bu)zn + BaTwp)|*
= (1= Bllzn = Tsall* + Bu L2 wn — (1 = Bu)zn + BaTwa)lI?
— Bu(l = B)llzn — Twy|?
< (1= B)lzn — Tsull* + BaL*(Billzn — Twall* + 0 |20 — Tznl?)
— Bu(l = B)llzn — Twy|?
= (1= Bu)llzn = Tsull* + Buoy L2llzn — Tzal®
— Bu(l = By = BrLP) 2w — Twall*. 37)
From (33), (34) and (37), these imply that

ITsn —x*1* = IT((1 = Bu)zn + BuTwn) — x*|?

<= B)(an — x*) + Bu(Twy — x|
+ (L= B)zn + BuTwn — T((1 = B)zn + BuTwn)lI?

< llzn = x*1* = Bu(on — Bw)llzn — Twal?
— Buon(1 — 204 — 0 L) |20 — Tzall?
+ (1= B)llzn — Tsull® + Buog L 20 — Tzul?
— Bu(l = Bu — B*L) |20 — Twy |)?

= llza — X*II* + (1 = B)llzn — Tsall®
— B (00 — Bw) + (1 = By — BILD)) I Twy — zall?
— Buon(l — 042+ L*) — 0,7 L) |20 — Tzul*. (38)

Since <c<o,<d< %, it obtains that
Pn n VLZH1+1+L2

1—B,—B2L>>0 and 1—0,2+ L% —0’L*>0.
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Therefore

s — x*1% < llza — x* 17+ (1 = Bu)llzn — Tsull*. (39)
From (11), (16) and (39), we have

21 — ¥ = 11 = Y)zn + Y Tsn — x*|I
= (1= y)llzn = X 12+ vall Tsp — x* 117 = yu(1 = yu) 2 — Tsll?
< (= y)llzn — ™1 + vulllza — x* 12+ A = B llzn — Tsull?)
— Yl = y)llzn — Tsll*

= llzn — x*1* = v (B — vu)llzn — Tsnll*

< llza — x*|1%. (40)
This together with (26) implies that

201 — x| < Il — ¥,

forevery x* € I' and for all n > 0. Therefore the sequence {x, } generated by algorithm (16)
is Féjermonotone with respect to I". Thus we obtain lim,,_,  ||x, — x*|| exists immediately,
it follows that {x,} is bounded and the sequence {|lx, — x*||} is monotonically decreasing.
Moreover, {y,} and {z,,} are also bounded sequences by using (22) and (25).
Combining (24) and (40), these imply that
a4t = x> < llzn — x*)1?
<l = 212 = (1 = A5 (@ + 21 A1) xn = yull®.
It follows that

(1= 22 4+ 21 A %0 — Yaull* < N — X1 = Il x0g1 — x*112,

and so
lim |lx, — ynll = 0. 41
n—oo
Likewise, we get
lim |z, — y.ll = 0.
n—00

In combination (41), (22) and lim,,_, 5o @, = 0, we have
dn(1 = Ml AIPISvn — Axy|* + Anllv — Ax™|
< llxp — X*HZ —lyn — X*HZ — Antp(2(uy — x*) + AnOnXp, Xp)
< (lx, — X*” + llyn — x*”)”xn = Yull = Anotn 2(u, — x*) + A0 Xn, Xp),
which implies that
lim |lv, — Ax,|| =0 and lim |Sv, — Ax,|| = 0.
n—00 n—00
So lim,,, ||y, — Sv,|| = 0. From (40), we get that
X0t = x*1% < llzn — x*1 = va(Ba — v)llzn — Tsull?

< %0 — x*I1* = ¥ (B — vu)llzn — Tsnll*.
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It follows that
Va(Br = v)llzn = Tsull® < lln = ™17 = 1 — ¥,
and so
Jim |z, — T's, | = 0.
For all n € N, we have
lzn — Tznll < llzn — Tsull + 1Tsp — Tzall
< llzn — T'snll + Lllsp — zall-
Since s, = (1 — Bn)zn + PnT w,, we have

lzn — Tzpll < llzn — Tsull + Lllsy — za|l
= llzn — Tsull + BnLllzn — Twyll. (42)

Since w, = (1 — 0,)zy + 0, T 2, Wwe get that
lzn — Twall < llzn — Tspll + 1Ty — Twy|
< llzn — Tspll + Lllsn — wall
= llzn — Tsull + onLllzn — Tznll + BuLllzn — Twhll. (43)
So,
(I =B Twy — znll < llzn — Tspll +0nLllzn — Tzall- (44)
By (42) and (44), we get that
lzn — Tzull < llzn — Tsull + BuLllzn — Twy||

1 o, L
= |lzp — Tsull + B L (m”h — Tsyll + “BL llzp — TZn||>

Bl onfuL?
1 T Tz,ll.
( + 1B L lzp — Tspll + ——— 1—B.L lzn — Tzall

This implies that

1
lzn — Tzull < <1 _ﬂnL_UnﬂnL2> lzn — Tspll.

Therefore
lim ||zy — T'znll = 0.
n—0o0
By (44), we have
lim |z, — Twy| = 0.
n—0o0

Using the firm nonexpansiveness of Pc, (9) and (22), we have
lyn = x*II> = | Peun — x*I1* < llun — x** = || Petty — un|1*
2 2
< lxn = x*1% = llyn — uall”.
It follows that

2 2 2
lyn = wnll™ < llxn = X117 = llyn — x7l

@ Springer



34 Page 140f25 P. Chuasuk, A. Kaewcharoen

< (Ixn = X" 4+ lyn = x*ID1xn = yull-
From (41), we have
lim ||y, —uul = 0.
n—0o0

Since the sequence {x,} is bounded, we can choose a subsequence {x,,} of {x,} such that
Xp,—X.
Therefore, from the above conclusions, we can obtain that

Xp; —X, In;—X,
yni—\f, and Axn[—\Af, (45)
Up,—X, vy, —~AX.

By Lemma 1, we have
X € F(T) and Ax € F(S).
From y,, = Pcuy; € C and v,;, = PgAx,, and by combining with (45), we get that
xeC and Ax e Q.
Therefore
Xe€eCNF(T) and Ax € QNF(S).

We can conclude that x € I" and this shows that wyw (x,,) C I". Since the lim,,_, o [|x, — x*||
exists for every x* € I and every subsequence of {x,} converges weakly to x* € I', it is
immediate from Lemma 2 that {x, } converges weakly to x* € I". This completes the proof.

]

Next, utilizing Theorem 1, we give the following corollary using the iterative method by
combining an extragradient method with regularization due to the Ishikawa iterative method.

Corollary 1 Let Hy and Hj be two real Hilbert spaces. Let C and Q be two nonempty closed
convex sets of Hy and H», respectively. Let A : Hi — Hj be a bounded linear operator
with its adjoint A*. Let S : Q — Q be a nonexpansive mapping and T : C — C be an
L-Lipschitzian pseudo-contractive mapping. For xo € Hy arbitrarily, let {x,} be a sequence
defined by

yn = Pc (xn — da(A*(I — SPp)A +an1)xn) s

Zn = Pc (Xn — M(A*(I — SPo)A + anD)yy) . 6
wy = (1 - On)zn + onTzp,

Xpp1 = (1 = Bu)zn + BT wy,

where {A,} C la, b] for some a,b € (0, #HA\P)’ {an} C (0,00), X2y, < 00 and

O<a<By<b<o,<c< — L Then the sequence {x,} generated by algorithm

VL2 +1+1+L2

(46) converges weakly to an element of I'.

Proof Firstly, we will show that the sequence {x,} is bounded. Let x* € I'. Then x* €
F(T)NC and Ax* € F(S)N Q. Setv, = PoAxy, un = Xy — Ay (A*(I —SPo)A+ay1)x,,
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VS = A*(I — SPg)A+a,l and V f5 = A*(I — SPg)A, foralln > 0. As in Theorem
1, we have

e — X* 1% < lxn — X*1% = Allvg — Axull? = 2n (1 = X | AP [ Svy — Ax|?

— dn0n (20 — X*) + ApGnXn, Xn), (47)

lzn = x*I1% < llxa — x*12 = (1 = Aj (@ + 21 A1 (|xn — yall®
< llxn — x*|I2, (48)
llzn — X*II1% = llxn — <17 — (1 = A5 (ctn + 21 A1 M1z — Yull. (49)

and
ITw, — x*|* < lzn — x* 1> + (1 = o) llzn — T((1 — 0)zn + 02 Tz0)|I>

— 0y(1 =20, — 02L?)|lzy — Tzall*

Since b <0, <c < we obtain that

1
VLZH1+14L2’
ITw, — x*|I* < lzn — x* 12+ (1 = 0)llzn — T((1 — 0)zn + 0x Tz > (50)
From (47) and (50), we have
%041 — X 117 = 11 = Bu)zn + BuTwy — x*||?
= (1= Bllzn — x*I1* + BallTwy — x*|1* = Bu(1 = B)llzn — Twall?
< (= B)llzn = x 12+ Bulllzn — x*I* + (1 = o)llzn — Twal?)
— Bu(1 = B)llzn — Twy|?
= llza — x*I1> = Bu(on — Bu)llzn — Twyl?

2 2
< llzn = x*17 = flon — X1 (51

This implies that {x,} is a bounded sequence and the sequence {|x,, — x*||} is monotonically
decreasing. Thus lim,_, » [|x, — x*|| exists immediately, Moreover, {y,} and {z,} are also
bounded sequences. In the same process of the proof in Theorem 1, we get that

lim |lzp — yull = lim [lx, — y,ll = lim |y, —u,ll =0,
n—o00 n—o00 n— 00
and by (47), we obtain that
lim ||v, — Ax,|| = lim ||Sv, — Ax,|| = 0.
n—0o0 n—00
From (51), we observe that

2 2 2
%541 _x*” < |lzn —X*H = Bu(ow — B llzn — Twy||

< llxn = X*I1* = Bu(on — Bu)llzn — Twy . (52)
Thus
Bu(on — B)llzn — Twall® < llxw — x*[1> = [lxp41 — x*|1%. (53)
By taking the limit of n — oo, we have

lim ||z, — Tw,| = 0.
n—oo
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For all n € N, we have

lzw — Tznll < llzn — Twall + 1 Twn — Tzull
< llzn = Twnll + LII(1 = 0n)zn + 0nTzn — zull
<lzn — Twyll + 0, Lllzpn — Tznll.

It follows that
(I —onL)llzn — Tzull < llzn — Twy .
Therefore
Jim lzp = Tzull = 0.

Consequently, all conditions in Theorem 1 are satisfied and we can conclude that Corollary
1 can be obtained from Theorem 1 immediately. O

Next, utilizing Theorem 1, we give the following corollary when omit {z, } in the iterative
method of Theorem 1.

Corollary 2 Let Hy and H> be two real Hilbert spaces and let C and Q be two nonempty
closed convex sets of Hy and Hj, respectively. Let A : Hy — Hjy be a bounded linear
operator with its adjoint A*. Let S : Q — Q be a nonexpansive mapping and T : C — C
be an L-Lipschitzian pseudo-contractive mapping. For xo € H arbitrarily, let {x,} be a
sequence defined by

yn = Pc (xn — M (A*(I — SPp)A +05nl)xn) s
wp = (1 —0n)yn +0nTyn,

sp = = Bu)yn + BuTwy,

Xn+1 = (L= ¥)yn + ¥aTsn,

(54)

where {A,} C la, b] for some a,b € (0, a,} C (0,00), XX, < 00 and

S B
an+2llAH2)’ {

1
VLZH1+14+L2"
by algorithm (54) converges weakly to an element of I".

O<a<yy<b<pp<c<o,<dc< Then the sequence {x,} generated

Proof Firstly, we will show that the sequence {x,} is bounded. Let x* € I'. Then x* €
F(T)NC and Ax*NF(S) € Q. Setv, = PgAxp, ity = Xy — ry(A*(I — SPo) A+ 1) xp,
VS = A*(I — SPg)A +a,l and V f5 = A*(I — SPg)A, foralln > 0. As in Theorem
1, we have
lyn = x*1% < llxn — x* 1> = Anllvg — Axa | = 20 (1 = A [AID) [ Sv — Axy |I?
— A0ty (2(uy — x*) + AnQpXy, Xp) (55)
and

21 — x¥1% <y — x*1% (56)

This implies that {x,} is a bounded sequence.
In view of (55) and (56), we obtain that

lim [jv, — Ax,|| = lim ||Sv, — Ax,| = 0. 67
n—oo n—oo
Therefore
lim |jv, — Sv,|| = 0.
n—oo
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Since Pc is firmly nonexpansive, we have
lyn = x*I> = | Peun — x*I1* < llup — x** = || Petty — un|*
< lxn = 1P = llyn — unll®.
Hence
lim |y, —uu| = 0. (58)
n—0o0
By up, = x, — M (A*(I — SPg)A + a,1)x, and (57), it follows that
lim |u, —x,| = 0.
n—oo
Combining with the previous equation and (58), we obtain that
lim |[x, — ynll = 0.
n—oo

Asin the proof of Theorem 1, we have lim, . ||y, —T's,, || = 0. It follows thatlim,,_, oo ||y, —
Tynll = 0.

Consequently, all conditions in Theorem 1 are satisfied and we can conclude that Corollary
2 can be obtained from Theorem 1 immediately. O

Next, utilizing Theorem 1, we illustrate the following corollary by setting S : Hy — H>
to be an identity mapping in Theorem 1.

Corollary 3 Let Hy and H> be two real Hilbert spaces. Let C and Q be two nonempty closed
convex sets of Hy and H», respectively. Let A : Hi — Hj be a bounded linear operator
with its adjoint A*. Let T : C — C be an L-Lipschitzian pseudo-contractive mapping. For
xo € Hy arbitrarily, let {x,} be a sequence defined by

yn = Pc (Xn — kn(A*(I — Po)A + ayD)xy)

Zn = Pc (xn — M(A*(I — Po)A + anD)y,)

wy = (1 —op)zn +0n Tz, (59
sn =1 = Bu)zn + BnTwn,

X1 = (1 = y)zn + Va T sn,

where {A,} C la,b] for some a,b € (0, #MAHZ)’ {an} C (0,00), X2, < 00 and

O<y<a<Bi<b<o,<c< —L  Then the sequence {x,} generated by

VL241+1+L2

algorithm (59) converges weakly to an element of I".

Example 1 [26] Let H be the real Hilbert space R? under the usual Euclidean inner product.
If x = (a,b) € H , define x= € Htobe (b, —a). Let K := {x € H : ||x|| < 1}. and set

1 1
K ::{er:||x||§§} and Kj ::{er:§§||x||§l}.
Define T : K — K as follows:

+ if K
Tx={x—|—x if x € Ky, 60)

ﬁ—x—l—xL if x € K».

Then T is an L-Lipschitzian pseudo-contractive mapping with L = 5 and F(T) = {0}.
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We next show that Example 1 satisfies all assumptions in Theorem 1 in order to illustrate
the convergence of the sequence generated by the iterative process defined in Theorem 1 and
compare its behavior with Ishikawa-type extragradient iterative method of Ceng et al. [25].

Example2 let HH = Hy = R? under the usual Euclidean inner product. Let C = {x € H :
x|l < 1}and T as in Example 1. Let Q = R? and Sx = 1x forallx € R%. Set Ax = Jx for

all v € B2 Let Ay = 25, @y = =7, 00 = 0.03, B, = 0,025, y, = 0.01 forall n € N. It

is easy to see that I" = {0}. Let xo = (0.8, 0.6), then the sequence {x, } generated iteratively
by (16) converges to 0 (Fig. 1; Table 1).

—— New iteratve = ====- Cengetal. [25]

c
b3
o
>
[
>
@
Q
c
o
3
o
o

172]

RIYRRIVLINLILIVRAR
R -~

Iterative step

Fig.1 The convergence of {x;} of Theorem 1 and Theorem 3.1 [25]

Table 1 The number of iterations for Example 2

No. of iterations New iterative Iterative of Ceng et al. [25]
0 (0.800000, 0.600000) (0.800000, 0.600000)
10 (0.253946, 0.249351) (0.633949, 0.605189)
20 (0.080841, 0.079395) (0.284389, 0.271512)
80 (0.000035, 0.000034) (0.000514, 0.000491)
90 (0.000009, 0.000009) (0.000164, 0.000157)
91 (0.000008, 0.000008) (0.000146, 0.000140)
110 (0.000001, 0.000001) (0.000016, 0.000015)
111 (0.000001, 0.000001) (0.000014, 0.000014)
112 (0.000000, 0.000000) (0.000013, 0.000012)
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3.2 The generalized Mann-type extragradient with regularization iterative method
for pseudo-contractive mappings without Lipschitz assumption

Theorem 2 Let Hy and H; be two real Hilbert spaces and let C and Q be two nonempty
closed convex sets of Hy and Hj, respectively. Let A : Hy — Hjy be a bounded linear
operator with its adjoint A*. Let S : Q — Q be a nonexpansive mapping and T : C — C
be a continuous pseudo-contractive mapping. For xo € H\ arbitrarily, let {x,} be a sequence
defined by

yn = Pc (xn — M (A*( — SPQ)A +05nl)xn) s
Zn = Pc (xn — M (A*(I = SPQ)A + anD)yn) . (61)
Xp1 = 0nZpn + BTz + YuXn, n >0,

where {A,} C la, b] for some a,b € (0, m), {an,} C (0, 00), Z‘,‘fioot,, < o0 and

{vu}, {Bu}, {on} C (a,b) C (0, 1) such that y,, + B + 0, = 1. Then the sequence {x,}
generated by algorithm (61) converges weakly to an element of I'.

Proof Firstly, we will show that the sequence {x,} is bounded. Let x* € I'. Then x* €
F(T)NCand Ax* € F(S)NQ.Setv, = PgAxy, iy = X —ky(A*(I =SPg)Ax,+a,1)x,,
VS = A*(I — SPg)A +ayl and V£S5 = A*(I — SPg)A, forall n > 0. As in Theorem
1, we obtain that

lym = x*I1* < llxn — x*1> = Anllvn — Axull> = An(1 = An | AID)Sv — Axy ||
— M@y 2y — X*) + Apotn X, Xp) (62)
and
lzn = x*I1* < llxa = x*1> = (1 = Aj (e + 20 AIDD [xa — yall*. (63)
Likewise, we obtain that
lzn = X*II1* < lxw — x*[1* = (1 = A5 (@n + 21 A 20 — yall*-
In view of (11), (12), (62), and (63), this implies that
201 = x* 1% = [1YaXn + 0nzn + BuTzn — x*|?
= Yullxa — X1 + onllzn — x* 1> + Bull Tzn — x*|7
= VnOullXn = zull*> = YaBullxn — Tzall* = ouBullzn — Tzal?
= Vullxn = x*I7 + onllzn — X1 + Bu((Tzn — 20, T2n — x*)
+ (zn = X T2n — X)) = Yu0ullXn — 2a > = YuBullxn — Tzal?
= ouPullzn — Tzl
< Vullxn = x* 12 + (@ + B llzn — X*11* = Yuoullxn — 2]l
= VuBullxn — Tzall* = ouPullzn — Tzal?
< Yullxn = x* 12 + (00 + Bu) (lxn — x*||?
— (1= A (an + 20 A 50 — yall®)
— VnOullXn = 20l = VuBullxn — Tzull* = ouPullzn — Tzal?
< llxn = x| = (o0 + Bu) (1 — A (ot + 2] Al 160 — )
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= Yu0ullxn — zull* = YaBullXn — Tzall> — ouBallzn — Tzall>. (64
By the hypothesis of {A,}, we have
21 — x*[| < [l — x*].

This implies that {||x, — x*||} is a nonincreasing sequence and obtain that the limit of the
sequence {|lx, — x*||} exists, we get that {x,} is a bounded sequence. From (64), we have

(0 + B (1 — A2 (atn + 21 AIDD) %0 — Yull? + vu0ullxn — zall?
+ VuBallxn — Tza > + 0uBallzn — Tzall?

2 2
< xn = X7 = N — x*17

By the hypothesis of the parameters o,, 8, and y,, , we obtain that

lim |lx, —zxll = lim |x, — Tz,ll = lim ||z, — Tz, =0,
n—0o0 n—0o0 n—oo
and
lim |jx, — y,|l = 0. (65)
n—00

Likewise, we have
lim ||z, — yall = 0.
n—o0
Combining with (62), this implies that

Allon — Ax|I? + 2y (1 = A [IAID[Sv, — Axy |
< N — x¥1% = llyn — X5 = Antn 2y — X*) + Aylp X, Xn)

=< (”xn - X*” + ”yn - X*H)H)Cn — Vn ” - )\nO‘n<2(un - x*) + )"nanxna xn)-

By the hypothesis of {«,}, {1, } and (65), it follows that

lim |v, — Ax,|| = lim |Sv, — Ax,|| =0.
n—00 n—00
Therefore,
lim ||v, — Sv,| = 0.
n—oo

As in the proof of Theorem 1, we get that
lim |y, —upll = lim fu, — X, [l = 0.
n—oo n—odo

Consequently, all conditions in Theorem 1 are satisfied and we can conclude that Theorem
2 can be obtained immediately. O

Similarly as previous subsection, utilizing Theorem 2, we give the following corollary
when changing the generalized Mann-type iterative method is the Mann-type iterative method

Corollary 4 Let Hy and Hj be two real Hilbert spaces. Let C and Q be two nonempty closed
convex sets of Hy and H», respectively. Let A : Hy — Hj be a bounded linear operator with
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its adjoint A*. Let S : Q — Q be a nonexpansive mapping and T : C — C be a continuous
pseudo-contractive mapping. For xo € Hy arbitrarily, let {x,} be a sequence defined by

yn = Pc (xn — Ma(A*(I — SPp)A +an1)xn) s
2 = Pc (xn — M (A*(I — SPQ)A + anD)yy) . (66)
Xpt1 = = Bzn + BuTzn, n >0,

where {A,} C la, b] for some a,b € (0, %++IIAH2)’ {an} C (0,00), X2y, < 00 and

{Bn} C (0, 1) such that liminf,_, B, (1 — By) > 0. Then the sequence {x,} generated by
algorithm (66) converges weakly to an element of I".

Proof Firstly, we will show that the sequence {x,} is bounded. Let x* € I'. Then x* €
F(T)NCand Ax™ € F(S)NQ.Setv, = PoAxy,uy = X, —hy(A*(I —=SPg)Axp+a,1)x,,
VS = A*(I — SPg)A+a,l and V f5 = A*(I — SPp)A, forall n > 0. As in Theorem
1, we have

Iy — 312 < llxn — x*11% = Anllon — Axall? = 2 (1 = A |AIP) | Svn — Axy ||
— Ay (2(1,{” - X*) + Aty Xy, xn) (67)
and
lzn — x* 1% <l — x* 12 = (1 = A2 + 21 AIDD) 120 — yull*. (68)
Likewise, we obtain that
lzn — X1 <l — x* 1% = (1 = A2 (@ + 21 AID ) 120 — yull*.
By (13) and (68), it follows that
a1 — x* 12 = 1(1 = B)zn — BaTzn — x|
= (1= Bllzn — x>+ BullTzn — x*11> = B (1 — B)llzn — Tzall?
= (1= Bu)llzn — x* 1 + BulTzn — 20, T2y — x¥)
+ Balzn — x*, Tzy — x*) = Bu(1 = Bu) |z — Tzall?
< llzn = x*I* = Bu(1 = B)llzn — Tzall?
< llotn — x* 1% = (1 = A2 (an + 21 AIDD X0 — yall?
— Bl = B)llzn — Tzall*. (69)
Therefore
g1 — x| <l — ¥

Similarly, by the process in Theorem 2, we have {x,} is a bounded sequence. From (69), we
have

(1 — 22 (an + 20 A1DH 10 — yull? + Bu(1 = B)llzn — Tzall?

< ot — 2% = X1 — x*)12 (70)
It follows that
lim |x, — yall = lim ||z, — Tzy|| = 0.
n—0o0 n—0o0
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Similarly, we have
lim |z, — y.ll = 0.
n—00

As the same argument of Theorem 2, we get that

lim ||v, — Ax,|| = lim ||Sv, — Ax,|| = lim ||v, — Sv,| = 0.
n—00 n—o00 n—o0o
and
lim flup, — X, = lim [lu, — yall = 0.
n—o0 n—o0

Consequently, all conditions in Theorem 2 are satisfied and we can conclude that Corollary
4 can be obtained immediately. O

Next, utilizing Theorem 2, we give the following corollary when omit {z, } in the iterative
method of Theorem 2.

Corollary 5 Let Hy and Hy be two real Hilbert spaces and let C and Q be two nonempty
closed convex sets of Hy and H», respectively. Let A : Hy — H» be a bounded linear with
its adjoint A*. Let S : Q — Q be a nonexpansive mapping and T : C — C be a continuous
pseudo-contractive mapping. For xo € Hy arbitrarily, let {x,} be a sequence defined by

{yn = Pc (xn_)m(A*(I_SPQ)A+Ont)xn)7 (71)

Xnt1 = OnYn + BnTYn + YnXn, n >0,

{An} C la,b] for some a,b € (0, m) , o} € (0,00), Z2 0y < 00 and
{vu}, {Bu}, {on} C (a,b) C (0, 1) such that y, + B + o, = 1. Then the sequence {x,}
generated by algorithm (71) converges weakly to an element of I".

Proof Firstly, we will show that the sequence {x,} is bounded. Let x* € I'. Then x* €
CNF(T)and Ax* € QNF(S).Setv, = PoAx,,uy = xu—Ap(A*(I=SP@)Axp+ipD)ayxy,
for all » > 0. As in Theorem 2, we have

lim [y, — Ty, =0
n—o0
and
lim v, — Ax,|| = lim ||Sv, — Ax,|| = lim ||v, — Sv,| = 0.
n—o00 n—00 n—oo
Similarly to Corollary 2, we obtain that
lim |lu, — y,ll = lim |lx, — yu|| = 0.
n—o0 n—o0

Consequently, all conditions in Theorem 2 are satisfied and we can conclude that Corollary
5 can be obtained immediately. O

Next, utilizing Theorem 2, we give the following corollary when define S : H, — Hj to
be identity mapping in Theorem 2.

Corollary 6 Let Hy and Hj be two real Hilbert spaces and let C and Q be two nonempty
closed convex sets of Hy and Hj, respectively. Let A : Hy — H» be a bounded linear operator
and A* : Hy — Hj be the adjoint of A. Let T : C — C be a continuous pseudo-contractive
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mapping such that I' N F(T) # (. For xo € H\ arbitrarily, let {x,} be a sequence defined
by
yn = Pc (xn = (A*(I — Pg)A + anl)xn)s
Zn = Pc (xn = M (A*(I — Po)A + anl)y,) (72)
Xpt1 = AnZy + BuTzn + Yuxn, n >0,

where {A,} C la, b] for some a,b € (0, #MAHZ)’ {an,} C (0, 00), Z‘,‘l’ioan < 00 and
{vu}: {Bn}: {on} C (a,b) C (0, 1) such that y, + Bn + o, = 1. Then the sequence {x,}
generated by algorithm (72) converges weakly to an element of I".

Next, we give the numerical example which satisfies all assumptions in Theorem 2 in
order to illustrate the convergence of the sequence generated by the iterative process defined
in Theorem 2 and compare its behavior with Mann-type extragradient iterative method of

Ceng et al. [25].
Example3 Let H = H, = R. Let C = R/{—1} and Tx = —(ljﬁ—x)
ITx—Ty|? < |I%u2 < lx=ylI2+|I({ =T)x — (I —T)y|? then T is a continuous

pseudocontractive mapping. Let Q = R and Sx = %x for all x € R. Set Ax = %x for all

for all x € C. Since

= = Cengetal [25] ———New iterative

S
3
o

=
©
>
@
o
c
)
=
o
@

n

0.00
01 2 3 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Iterative step

Fig.2 The convergence of {x;} of Theorem 2 and Theorem 4.1 [25]

Table 2 The number of iterations

for Example 3 No. of iterations New iterative Ceng et al. [25]
0 2.000000 2.000000
1 1.007543 1.369996
5 0.037257 0.164183
10 0000267 0.005400
14 0.000005 0.000304
15 0.000002 0.000147
16 0.000001 0.000071
17 0.000000 0.000034
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xeR. Leth, = 2, o, = (ﬁ)z op =0.6 B, =0.3,y, = 0.1 forall n € N. It is easy to

see that I" = {0}. Let the sequence {x, } be generated iteratively by (61), then the sequence
{x,} converges to O (Fig. 2; Table 2).
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