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Abstract: In this article, we introduce another standard form of linear preservers.
This new standard form provides characterizations of the linear transformations on
the set of bisymmetric matrices with zero diagonal and zero antidiagonal over
antinegative semirings without zero divisors which preserve some sort of term ranks
and preserve the matrix that can be determined as the greatest one. The numbers
of all possible linear transformations satisfying each condition are also obtained.
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1. Introduction
Linear preserver problems (LPPs) are one of the most active research topics in matrix theory during
the past half-century, which have been studied when linear transformations on spaces of matrices
leave certain conditions invariant. An excellent reference for LPPs is Pierce et al. (1992). There are
many works on LPPs over various algebraic structures. The spaces of matrices over semirings also
have been one of them.

Rank preserver problems play a pivotal role in investigating questions regarding other preservers.
It can be found in Young & Choi (2008) that there are many nonequivalent definitions of rank
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functions for matrices over semirings. Among many essential different definitions of rank functions
of matrices over semirings, the combinatorial approach leads to the term ranks of such matrices.

Inspired by Beasley, Song and Kang’s recently work, in Beasley, Song, & Kang (2012), on term
rank preservers of symmetric matrices with zero diagonal over commutative antinegative semir-
ings with no zero divisors, we investigate linear transformations on bisymmetric matrices whose all
diagonal and antidiagonal entries are zeroes over such semirings that preserve some term ranks.
We refer to Zhao, Hu, & Zhang (2008) and the references therein for more results and applications
of bisymmetric matrices.

The significant survey about LPPs in Chapter 22 of Hogben (2007) indicates that linear preservers
often have the standard forms. It turns out that our linear preservers do not possess any former
standard forms; however, we invent a new standard form in order to obtain a natural and intrinsic
characterization of term rank preserver on bisymmetric matrices whose all diagonal and antidia-
gonal entries are zeroes over commutative antinegative semirings with no zero divisors.

We organize this article as follows. In Section 2, some of the well-known terminologies and
results on LPPs are reviewed and the notations in our work are introduced. In the third section, the
results on term rank preservers of bisymmetric Boolean matrices with zero diagonal and zero
antidiagonal are presented. Then, we extend the results to the case that all entries of such
matrices are in commutative antinegative semirings with no zero divisors in the last section.

2. Definitions and preliminaries
We begin this section with the definition of a semiring. See Golan (1999) for more information
about semirings and their properties.

Definition 2.1. A semiring S ;þ; �ð Þ is a set S with two binary operations, addition (þ ) and multi-
plication ( � ), such that:

(i). S ;þð Þ is a commutative monoid (the identity is denoted by 0);

(ii). S ; �ð Þ is a semigroup (the identity, if exists, is denoted by 1);

(iii). multiplication is distributive over addition on both sides;

(iv). s � 0 ¼ 0 � s ¼ 0 for all s 2 S.

We say that S ;þ; �ð Þ is a commutative semiring if ðS ; �Þ is a commutative semigroup. A semiring is
antinegative if the only element having an additive inverse is the additive identity. For a commu-
tative semiring S , a nonzero element s 2 S is called a zero divisor if there exists a nonzero element
t 2 S such that s � t ¼ 0.

Throughout this article, we let S be a commutative antinegative semiring containing the
multiplicative identity with no zero divisors and � is denoted by juxtaposition.

One of the simplest examples of an antinegative semiring without zero divisors is the binary
Boolean algebra B which is a set of only two elements 0 and 1 with addition and multiplication on
B defined as though 0 and 1 were integers, except that 1þ 1 ¼ 1. Note that B is also called a
Boolean semiring. Another example of these semirings is the fuzzy semiring which is the real
interval ½0;1� with the maximum and minimum as its addition and multiplication, respectively.
Besides, any nonnegative subsemirings of R are other examples of such semirings.

Let Mm;nðS Þ denote the set of all m� n matrices over S . The usual definitions for addition and
multiplication of matrices are applied to such matrices as well. The notation MnðS Þ is used when
m ¼ n. A matrix in Mm;nðB Þ is called a Boolean matrix. A square matrix obtained by permuting rows
of the identity matrix is called a permutation matrix.
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In order to investigate LPPs on Mm;nðS Þ, we give the notions of a linear transformation on
Mm;nðS Þ and when it preserves some certain properties.

Definition 2.2. A mapping T : Mm;nðS Þ ! Mm;nðS Þ is said to be a linear transformation if TðαX þ βYÞ ¼
αTðXÞ þ βTðYÞ for all X; Y 2 Mm;nðS Þ and α; β 2 S .

Let K be a subset of Mm;nðS Þ containing all matrices with a property P and T a linear
transformation on Mm;nðS Þ. Then, we say that T preserves the property P if TðXÞ 2 K whenever X 2
K for all X 2 Mm;nðS Þ and T strongly preserves the property P if TðXÞ 2 K if and only if X 2 K for
all X 2 Mm;nðS Þ.

We next state the most common concept of the standard form in the theory of linear
preservers over semirings by the following definitions. Let Nn ¼ 1;2; . . . ;nf g.

Definition 2.3. A mapping σ : Nn ! Nn is said to be a half-mapping (on Nn) if σ satisfies the
following properties:

(i) σj
N n

2d e
is a permutation on N n

2d e, and

(ii) σðn� iþ 1Þ ¼ n� σðiÞ þ 1 for all i 2 N n
2b c.

If a half-mapping is also a permutation on Nn, then we call it a half-permutation.

Note that a half-mapping σ on Nn is a permutation if n is even, but σ is not necessarily a

permutation when n is odd. If n is odd, and the half-mapping σ on Nn satisfies σ n
2

� �� � ¼ n
2

� �
, then σ

is a permutation and hence a half-permutation.

Definition 2.4. Let ei be an n� 1 Boolean matrix whose only nonzero entry is in the ith row, σ a
half-mapping on Nn. We define the matrix induced by σ to be the n� n Boolean matrix whose the

ith column is eσðiÞ if i� n
2

� �
and the n

2

� �
th column is eσ n

2d eð Þ when n is even, and eσ n
2d eð Þ þ en�σ n

2d eð Þþ1

when n is odd. The matrix induced by σ is denoted by Pσ.

Definition 2.5. Let T : Mm;nðS Þ ! Mm;nðS Þ be a linear transformation. We say that T is induced by
ðσ; τ; BÞ if there exist mappings σ and τ on Nm and Nn, respectively, and a matrix B 2 Mm;nðS Þ such that
either

(i) TðXÞ ¼ PσðX � BÞQτ for all X 2 Mm;nðS Þ; or
(ii) m ¼ n and TðXÞ ¼ PσðXt � BÞQτ for all X 2 Mm;nðS Þ,

where � denotes the Schur product, i.e., A � B ¼ ½ai;jbi;j� for all A ¼ ½ai;j�; B ¼ ½bi;j� 2 Mm;nðS Þ.
We let Jm;n 2 Mm;nðS Þ denote the m� n matrix whose entries equal to 1. From now on, the

subscripts of matrices may be dropped when the sizes of matrices are clear from the context. We
simply say that T is induced by ðσ; τÞ when B ¼ J. We also say that T is induced by σ if T is induced by

ðσ; σ�1Þ where σ is a permutation on Nn. In general (see (Beasley & Pullman, 1987)), a linear
transformation T on Mm;nðS Þ induced by ðσ; τ;BÞ where σ and τ are permutations on Nm and Nn,
respectively, and all entries of B are nonzero, is usually called a ðP;Q; BÞ operator, where P and Q
are permutation matrices induced by σ and τ, respectively.

The characterizations of linear transformations preserving term ranks were first studied by
Beasley and Pullman (Beasley & Pullman, 1987) in 1987. This work is continued later on (see (Kang
& Song, 2012; Song & Beasley, 2013) and the references therein). We recall the definition of the
term rank and its preserver theorem as follows.

Definition 2.6. The term rank of A 2 Mm;nðS Þ is the minimum number of rows or columns required
to contain all the nonzero entries of A.
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Theorem 2.7. (Beasley & Pullman, 1987) Let T : Mm;nðS Þ ! Mm;nðS Þ be a linear transformation. Then
T preserves term ranks 1 and 2 if and only if T is induced by ðσ; τ; BÞ where σ and τ are permutations
on Nm and Nn, respectively, and all entries of B are nonzero.

Let Sð0Þn ðS Þ denote the set of all n� n symmetric matrices with entries in S and all diagonal

entries equal 0. Let A ¼ ½ai;j�; B ¼ ½bi;j� 2 Sð0Þn ðS Þ. The matrix A is said to dominate the matrix B,

written A � B or B � A, if bi;j ¼ 0 whenever ai;j ¼ 0 for all i; j. For A � B, the matrix ½xi;j� with xi;j ¼ ai;j
if bi;j ¼ 0 and xi;j ¼ 0 otherwise, is denoted AnB. Let I be the n� n identity matrix and K ¼ JnI. The
following theorem is a characterization of linear transformations on Sð0Þn ðB Þ preserving some term
ranks provided by Beasley and his colleagues (Beasley et al., 2012). They also generalized this

result to Sð0Þn ðS Þ.

Theorem 2.8. (Beasley et al., 2012) Let T : Sð0Þn ðB Þ ! Sð0Þn ðB Þ be a linear transformation. Then T
preserves term rank 2 and TðKÞ ¼ K if and only if T is induced by σ where σ is a permutation on Nn.

Recently, the study of linear transformations preserving a certain matrix function on Sð0Þn ðS Þ,
called the star cover number, was provided in Beasley, Song, Kang, & Lee (2013). The matrix in Sð0Þn ðB Þ
whose entries in the ith row and the ith column, except at the ði; iÞ position, are 1 and 0 elsewhere is

called the full star on row and column i. For A 2 Sð0Þn ðS Þ, a star cover of A is a sum of full stars
dominating A and the star cover number of A is the minimum number of full stars whose sum
dominates A.

Theorem 2.9. (Beasley et al., 2013) Let T : Sð0Þn ðB Þ ! Sð0Þn ðB Þ be a linear transformation. Then the
following are equivalent:

(i) T preserves the star cover number 1 and TðKÞ ¼ K;

(ii) T preserves the star cover numbers 1 and 2;

(iii) T is induced by σ where σ is a permutation on Nn.

To investigate further on bisymmetric matrices over semirings S , we let BSð0Þn ðS Þ denote the set of
all n� n bisymmetric matrices with entries in S and all diagonal and antidiagonal entries are 0.

Note that if A ¼ ½ai;j� 2 BSð0Þn ðS Þ, then ai;i ¼ 0 ¼ ai;n�iþ1 and ai;j ¼ aj;i ¼ an�jþ1;n�iþ1 ¼ an�iþ1;n�jþ1 for

all i�j. For i�j, let Qi;j 2 BSð0Þn ðS Þ be the matrix whose the four entries at the ði; jÞ, ðj; iÞ, ðn� jþ
1;n� iþ 1Þ and ðn� iþ 1;n� jþ 1Þ positions are 1 and other entries are 0. The matrix Qi;j is called

a quadrilateral cell and the matrix Qi;n�jþ1 is called the corresponding quadrilateral cell of Qi;j. We let

Ωn (or Ω when the size of matrices is clear) denote the set of all quadrilateral cells in BSð0Þn ðS Þ. For
each i 2 N n

2d e, the sum of all Qi;j such that j‚ i;n� iþ 1f g is called the full double star on rows and

columns i and n� iþ 1, denoted by DSi. A double-star matrix is a nonzero matrix in BSð0Þn ðS Þ
dominated by a full double star. Let L ¼ DS1 þ � � � þ DS n

2d e. The following notion is given in order

to investigate more on the preserver problems of the matrix function on BSð0Þn ðS Þ resembling the

star cover number of matrices on Sð0Þn ðS Þ.

Definition 2.10. Let A 2 BSð0Þn ðS Þ. A double-star cover of A is a sum of full double stars that
dominates A. The double-star cover number of A is the minimum number of full double stars
whose sum dominates A.

Next, a generalization of a linear transformation on BSð0Þn ðS Þ induced by ðσ; σ�1; BÞ, which turns
out to be the standard form for our results, is given by the following definition. We begin with the
notation of certain square Boolean matrices. For each A 2 MnðB Þ, we

let Að0Þ ¼ A and Að1Þ ¼ A

0 � � � 0 1
0 � � � 1 0
..
. ..

. ..
.

1 � � � 0 0

2
664

3
775:
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Definition 2.11. Let T : BSð0Þn ðB Þ ! BSð0Þn ðB Þ be a linear transformation. We say that T is induced by
ðσ; F;GÞ if there exist a mapping σ on Nn and matrices F ¼ ½fi;j�;G ¼ ½gi;j� 2 MnðB Þ such that

TðAÞ ¼ ∑
Qi;j2ΩA

PσQi;j P
ðfi;jÞ
σ þ P

ðgi;jÞ
σ

� �t

for all A 2 BSð0Þn ðB Þ where ΩA is the set of all quadrilateral cells summing to A.

We say that T is induced by ðσ; FÞ if T is induced by ðσ; F;GÞ and F ¼ G. Observe that

(i) PσQi;j Pð0Þσ

� �t ¼ QσðiÞ;σðjÞ and (ii) PσQi;j Pð1Þσ

� �t ¼ QσðiÞ;n�σðjÞþ1.

To illustrate more clearly, we give the following example.

Example 2.12. Let σ be the half-mapping on N7 defined by

σ ¼ 1 2 3 4 5 6 7
4 3 2 1 6 5 4

� 	
: Then Pσ ¼

0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0

2
666666664

3
777777775
.

Let F ¼

0 0 1 0 1 0 0
0 0 1 0 0 0 0
1 1 0 1 0 0 1
0 0 1 0 1 0 0
1 0 0 1 0 1 1
0 0 0 0 1 0 0
0 0 1 0 1 0 0

2
666666664

3
777777775
, G ¼

0 1 0 0 1 0 0
1 0 0 1 0 0 0
0 0 0 1 0 0 1
0 1 1 0 1 1 0
1 0 0 1 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 1 0

2
666666664

3
777777775

and T be a linear transformation on BSð0Þ7 ðB Þ induced by ðσ; F;GÞ. Then the following table shows
the images of each quadrilateral cell.

We end this section by introducing some instrumental notions.

Definition 2.13. Let i; j 2 Nn such that i�j, F ¼ ½fi;j� and G ¼ ½gi;j� be Booleanmatrices. We define the set

Λi;j ¼ fði; jÞ; ðj; iÞ; ðn� jþ 1;n� iþ 1Þ; ðn� iþ 1;n� jþ 1Þ;

ði;n� jþ 1Þ; ðn� jþ 1; iÞ; ðj;n� iþ 1Þ; ðn� iþ 1; jÞg

and the set FΛi;j ¼ ffp;q j ðp; qÞ 2 Λi;jg. We write F� ΛG if GΛi;j ¼ 1f g whenever 1 2 FΛi;j for all i�j. We
say that matrix F is strongly dominated by G, denoted by F< sG, if there exists i 2 Nn such that
FΛi;j ¼ 0f g and GΛi;j ¼ 1f g for all j�i.

A matrix A ¼ ½ai;j� 2 BSð0Þn ðS Þ is called a tetrasymmetric matrix if ap;q ¼ ai;j for all ðp; qÞ 2 Λi;j.

A Q1;2 Q1;3 Q1;4 Q1;5 Q1;6 Q2;3 Q2;4 Q2;5 Q3;4

TðAÞ Q3;4 Q2;4 Q1;4 Q2;4 Q3;4 Q2;5 þ Q2;3 Q1;3 þ Q1;5 Q2;5 Q1;6

Note that TðLÞ�L and T does not preserve term rank 4 since TðQ1;2Þ ¼ Q3;4.
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3. Term rank preservers of bisymmetric matrices over Boolean semirings
In this section, we first consider linear preservers of bisymmetric matrices with zero diagonal and
zero antidiagonal over Boolean semirings in order to generalize this notions to such matrices over
other semirings. The following observations are obtained from the structure of the quadrilateral
cells and the proofs are skipped.

Lemma 3.1. Let A 2 BSð0Þn ðB Þ.

(i) A is of term rank 2 or 4 if and only if A is a double-star matrix.

(ii) For each two distinct elements i; j 2 Nn, A � DSi and A � DSj if and only if A � Qi;j þ Qi;n�jþ1.

(iii) If the matrix L can be written as L ¼ F1 þ F2 þ � � � þ Ft where each Fi is a full double-star

matrix, then t � n
2


 �� 1.

The study of linear transformations that strongly preserve a certain property is a common research
focus (see (Beasley & Song, 2016a, 2016b) and references therein). We provide a characterization
of linear transformations on BSð0Þn ðB Þ preserving the matrix L strongly; i.e., L is the only matrix
mapped to itself.

Lemma 3.2. Let T : BSð0Þn ðB Þ ! BSð0Þn ðB Þ be a linear transformation. Then T preserves the set of all
nonzero matrices and T strongly preserves the matrix L if and only if T is bijective on Ω.

Proof. The sufficient part is obvious. To show the necessary part, we first show that T is injective
on Ω. Suppose on the contrary that there are two distinct quadrilateral cells Qu;v and Qw;z such that

TðQu;vÞ ¼ TðQw;zÞ. Let Λ denote the set Ωn Qu;v;Qw;z
� 


. Then L ¼ TðLÞ ¼ TðQu;vÞ þ TðQw;zÞ þ ∑
Q2Λ

TðQÞ ¼

T Qu;v
� þ ∑

Q2Λ
QÞ. This is a contradiction because Qu;v þ ∑

Q2Λ
Q�L.

We suppose further that TðΩÞ 6	 Ω. Since the images of the quadrilateral cells are not zero, it
follows that there exists a quadrilateral cell Qp;q such that TðQp;qÞ ¼ Qu1 ;v1 þ � � � þ Qum ;vm for some
m � 2 distinct quadrilateral cells. Note that m< Ωj j because T strongly preserves the matrix L. Let Δ

denote the set Ωn Qu1;v1 ; . . . ;Qum;vm

� 

. Since TðLÞ ¼ L, for each Qi;j 2 Δ, there exists Si;j 2 Ω such that

TðSi;jÞ � Qi;j. Let Υ be the collection of such fixed Si;j‘s. Thus γj j � Ωj j �m. Then

T Qp;q þ ∑
S2Υ

S

 !
¼ TðQp;qÞ þ T ∑

S2Υ
S

 !
¼ Qu1;v1 þ � � � þ Qum ;vm þ T ∑

S2Υ
S

 !
� Qu1 ;v1 þ � � � þ Qum ;vm

þ ∑
Q2Δ

Q ¼ L. This contradicts the fact that T strongly preserves L. Hence TðΩÞ 	 Ω.

Therefore, it follows by the finiteness of Ω that T is surjective on Ω.

Next, we prove one of the main results of this section.

Theorem 3.3. Let T : BSð0Þn ðB Þ ! BSð0Þn ðB Þ be a linear transformation. Then

(i) T preserves double-star matrices, and

(ii) T strongly preserves the matrix L

if and only if T is induced by ðσ; FÞ where σ is a half-permutation and F is a tetrasymmetric matrix.

Proof. Note that T is bijective on Ω because of the properties of σ and F. Hence, the sufficient part
follows.

To show the necessary part, we first show that for each nonzero matrix X 2 BSð0Þn ðB Þ, TðXÞ is not
the zero matrix. Suppose on the contrary that there is a nonzero matrix X such that TðXÞ is zero.
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Since X is nonzero, there is a quadrilateral cell Q � X such that TðQÞ is zero. This is a contradiction
because Q is a double-star matrix. Hence T is bijective on Ω by Lemma3.2.

First, we consider the case that n � 5. There is nothing to do with the case n ¼ 1;2 because BSð0Þ1

and BSð0Þ2 are the sets of the zero matrix.

For n ¼ 3, we have Ω3 ¼ Q1;2
� 


. Since T is bijective on Ω3, it follows that TðQ1;2Þ ¼ Q1;2, i.e., T is
induced by ðσ; FÞ where σ is the identity map on N3 and F is zero.

For n ¼ 4, we have Ω4 ¼ Q1;2;Q1;3
� 


. This implies that T is the identity map on Ω4 or TðQ1;2Þ ¼
Q1;3 and TðQ1;3Þ ¼ Q1;2. Consequently, T is induced by ðσ; FÞ where σ is the identity map on N4 and F
is zero or F ¼ L4.

For n ¼ 5, we have Ω5 ¼ Q1;2;Q1;3;Q1;4;Q2;3
� 


. Since T preserves double-star matrices, and each
of the three quadrilateral cells summing to DS1 is mapped to three distinct quadrilateral cells, it
follows that TðDS1Þ ¼ DS1 or TðDS1Þ ¼ DS2. Similarly, TðDS2Þ ¼ DS1 or TðDS2Þ ¼ DS2 and we also
obtain that TðDS3Þ ¼ DS3. This implies that T is induced by ðσ; FÞ where σ is the identity map on N5

or σ ¼ ð12Þð3Þð45Þ and F is zero or F ¼ Q1;2 þ Q1;4.

Now, we consider the case that n � 6. We next define a permutation σ on N n
2d e. Since T preserves

double-star matrices, TðDSiÞ is a double-star matrix for all 1 � i � n
2


 �
. That means for each i 2 N n

2d e,
TðDSiÞ is dominated by DSj for some j 2 N n

2d e. Then we define σ : N n
2d e ! N n

2d e by σðiÞ ¼ j; if TðDSiÞ �
DSj for all i 2 N n

2d e.

To show that σ is well-defined, we suppose that there exist i 2 N n
2d e such that TðDSiÞ � DSp and

TðDSiÞ � DSq for some p; q 2 N n
2d e with p�q. Then, it follows from Lemma 3.1(ii) that

TðDSiÞ � Qp;q þ Qp;n�qþ1. Next, we calculate the numbers of quadrilateral cells that are summed
to L and LnDSi. Note that

ΩLj j ¼
ðn�1Þ2

4 ; if n is odd;
nðn�2Þ

4 ; if n is even:

(

Weobserve that if n is odd and , then ΩDSi

�� �� ¼ n�1
2 , otherwise ΩDSi

�� �� ¼ n� 2. Since n � 6, in both cases,
the number of all quadrilateral cells that are summed to LnDSi is less than the number of quadrilateral
cells excluding Qp;q and Qp;n�qþ1. Since L ¼ TðLÞ ¼ TðLnDSiÞ þ TðDSiÞ � TðLnDSiÞ þ Qp;q þ Qp;n�qþ1, by
the simple pigeonhole principle, the image of some quadrilateral cells dominates at least two quad-
rilateral cells. Then, there exists a quadrilateral cell Qx;y such that TðQx;yÞ � Qu;v þ Qw;z where u � v,

w � z, u;w 2 1;2; . . . ; n
2


 �� 1
� 


and ðu; vÞ�ðw; zÞ. Since TðQx;yÞ is a double-star matrix, there exists k 2
N n

2½ � such that TðQx;yÞ � DSk. Hence, Qu;v � Qu;v þ Qw;z � TðQx;yÞ � DSk. Then, k ¼ u or either k ¼ v if

v � n
2


 �
, or k ¼ n� vþ 1 if v> n

2

� �
. For convenience, wemay assume that v � n

2


 �
. We then separate our

proof into two cases and two subcases therein.

Case 1. DSu � Qu;v þ Qw;z.

Subcase 1.1. DSvQu;v þ Qw;z.

This means that DSu is the only double-star matrix that dominates Qu;v þ Qw;z. Since Qu;v þ Qw;z �
TðQx;yÞ � TðDSxÞ and TðDSxÞ is a double-star matrix, it follows that TðDSxÞ � DSu. Similarly,

TðDSyÞ � DSu. Note that we can consider DSn�yþ1 instead of DSy if y> n
2

� �
. Notice that the matrix L

can be written as L ¼ DSx þ DSy þ DSz1 þ � � � þ DSz n
2d e�3

for some z1; . . . ; z n
2d e�3 2 N n

2d enfx; yg. Then
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L ¼ TðLÞ ¼ T DSxð Þ þ T DSy
� �þ T DSz1ð Þ þ � � � þ T DSz n

2d e�3

� 	

� DSu þ T DSz1ð Þ þ � � � þ T DSz n
2d e�3

� 	
:

Thus, L is dominated by the sum of at most n
2

� �� 2 full-star matrices. This is a contradiction.

Subcase 1.2. DSv � Qu;v þ Qw;z.

Then,Qu;v þ Qw;z � DSu þ DSv. SinceQu;v þ Qu;n�vþ1 is the only sum of two distinct quadrilateral cells

dominated by DSu þ DSv, we obtain that Qw;z ¼ Qu;n�vþ1. Thus, Qu;v þ Qu;n�vþ1 � T Qw;z
� � � T DSxð Þ. It

follows that T DSxð Þ � DSu or T DSxð Þ � DSv. Similarly, T DSy
� � � DSu or T DSy

� � � DSv:

If TðDSxÞ � DSu and TðDSyÞ � DSu, then we get a contradiction as the subcase 1.1. Similarly,
TðDSxÞ � DSu and TðDSyÞ � DSu cannot occur simultaneously. This leaves us either (i) TðDSxÞ � DSu
and TðDSyÞ � DSv or (ii) TðDSxÞ � DSv and TðDSyÞ � DSu. In any cases, TðQx;yÞ � Qu;v þ Qu;n�vþ1

because Qx;y is dominated by both DSx and DSy and T is linear. Hence,
Qu;v þ Qu;n�vþ1 ¼ Qu;v þ Qw;z � TðQx;yÞ � Qu;v þ Qu;n�vþ1. Thus, TðQx;yÞ ¼ Qu;v þ Qu;n�vþ1. This is a con-
tradiction since T is injective on Ωn.

Case 2. DSuQu;v þ Qw;z.

Subcase 2.1. DSvQu;v þ Qw;z. This case is impossible.

Subcase 2.2. DSv � Qu;v þ Qw;z. In this case, we get a contradiction similarly to the subcase 1.1.

Now we can conclude that σ is well-defined.

By Lemma, we have that T is bijective on Ω and since T is linear, T is bijective on BSð0Þn . This means
that T maps fDS1; . . . ;DS n

2d eg onto fDS1; . . . ;DS n
2d eg injectively, and TðDSiÞ ¼ DSσðiÞ. Indeed, if n is

odd, then TðDS n
2d eÞ ¼ DS n

2d e. Hence, σ is a permutation on N n
2d e. Then, we extend σ to be a half-

permutation on Nn. That is, σðiÞ ¼ n� σðn� iþ 1Þ þ 1 for all n
3


 � � i � n.

Let consider the image of the quadrilateral cells. Let Qi;j 2 Ω. Without loss of generality, we
assume that i; j 2 N n

2d e. Then, TðQi;jÞ � TðDSiÞ ¼ DSσðiÞ and TðQi;jÞ � TðDSjÞ ¼ DSσðjÞ. By Lemma 3.1(ii),

we obtain that TðQi;jÞ � QσðiÞ;σðjÞ þ QσðiÞ;n�σðjÞþ1: Since T sends injectively quadrilateral cells to quad-

rilateral cells, either TðQi;jÞ ¼ QσðiÞ;σðjÞ or TðQi;jÞ ¼ QσðiÞ;n�σðjÞþ1.

If TðQi;jÞ ¼ QσðiÞ;σðjÞ, then we can conclude that TðQp;qÞ ¼ QσðpÞ;σðqÞ for all ðp; qÞ 2
ði; jÞ; ðj; iÞ; ðn� jþ 1;n� iþ 1Þ; ðn� iþ 1;n� jþ 1Þf g and TðQp;qÞ ¼ QσðpÞ;σðqÞ for all ðp; qÞ 2
ði;n� jþ 1Þ; ðn� jþ 1; iÞ;f ðj;n� iþ 1Þ; ðn� iþ 1; jÞg. Moreover, we obtain the similar result for

the case that TðQi;jÞ ¼ Qi;n�σðjÞþ1. Hence, for each i; j 2 Nn with i�j, it follows that either

(i) if TðQi;jÞ ¼ QσðiÞ;σðjÞ, then TðQp;qÞ ¼ QσðpÞ;σðqÞ for all ðp;qÞ 2 Λi;j, or

(ii) if TðQi;jÞ ¼ QσðiÞ;n�σðjÞþ1, then TðQp;qÞ ¼ QσðpÞ;n�σðqÞþ1 for all ðp;qÞ 2 Λi;j.

We now construct an n� n Boolean matrix F ¼ ½fi;j� by letting

(i) fi;i ¼ 0 ¼ fi;n�iþ1 for all i 2 Nn;

(ii) if n is odd, fi;j ¼ 0 whenever i ¼ n
2

� �
or j ¼ n

2

� �
;
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(iii) fi;j ¼ ð0; if TðQi;jÞ ¼ QσðiÞ;σðjÞ
1; if TðQi;jÞ ¼ QσðiÞ;n�σðjÞþ1

for all i; j 2 Nn and i�j.

Then, F is tetrasymmetric. Let Qi;j 2 Ω. Then

(i) TðQi;jÞ ¼ QσðiÞ;σðjÞ implies TðQi;jÞ ¼ PσQi;jðQð0Þ
σ Þt; and

(ii) TðQi;jÞ ¼ QσðiÞ;n�σðjÞþ1 implies TðQi;jÞ ¼ PσQi;jðPð1Þσ Þt.

Thus, for each A 2 BSð0Þn , TðAÞ ¼ ∑
Qi;j2ΩA

PσQi;jðPðfi;jÞσ Þt. That is T is induced by ðσ; FÞ, where σ is a half-

permutation and F is a tetrasymmetric matrix.

From Lemma 3.1(i), we can conclude that T preserves the set of all matrices of term ranks 2 and
4 if and only if T preserves double-star matrices. We observe that if T is induced by ðσ; FÞ, where σ is
a half-permutation and F is a tetrasymmetric matrix, then T preserves term ranks 2 and 4. By these
facts and the previous theorem, we obtain immediately the following results. We also provide the
number of linear transformations satisfying such assumptions.

Corollary 3.4 Let T : BSð0Þn ðB Þ ! BSð0Þn ðB Þ be a linear transformation. Then

(i) T preserves term ranks 2 and 4, and

(ii) T strongly preserves the matrix L

if and only if T is induced by ðσ; FÞ where σ is a half-permutation and F is a tetrasymmetric matrix.

Moreover, the number of such linear transformations is n
2

� �
! 12

n
2

� �2 � n
2

� �� �
.

Next, we provide the characterization of double-star cover number preservers. Note that when

n � 4, we obtain the characterization of linear transformations on BSð0Þn ðB Þ preserving double-star
cover number easily. From now on, we assume that n � 5.

Theorem 3.5. Let T : BSð0Þn ðB Þ ! BSð0Þn ðB Þ be a linear transformation. Then, T preserves double-star

cover numbers 1 and 2 if and only if T is induced by ðσ; F;GÞ where σ is a half-mapping on Nn, F;G 2
BSð0Þn ðB Þ with F � G and F<sG provided n is odd.

Moreover, the number of such linear transformations is

n
2 !3

nðn�2Þ
4 ; if n is even;

n
2

� �
! 3

ðn�1Þðn�3Þ
4 þ n

2

� �
3

ðn�3Þ2
4

� 	
; if n is odd:

8><
>:
Proof . The sufficient part is obvious. To show the necessary part, we first define a permutation on
N n

2d e. Since T preserves double-star cover number 1, for each i 2 N n
2d e, there exists j 2 N n

2d e such that

TðDSiÞ � DSj. We then define σ : N n
2d e ! N n

2d e by σðiÞ ¼ j if TðDSiÞ � DSj for all i 2 N n
2d e.

To show that σ is well-defined, suppose that there exists i 2 N n
2d e such that TðDSiÞ � DSp and

TðDSiÞ � DSq where p; q 2 N n
2d e with p�q. It follows from Lemma 3.1(ii) that TðDSiÞQp;q þ Qp;n�qþ1.

Let j; k 2 N n
2d enfig with j�k and j� ij j ¼ 1. Then TðQi;j þ Qj;kÞ ¼ TðQi;jÞ þ TðQj;kÞ � TðDSiÞ þ TðQj;kÞ �

Qp;q þ Qp;n�qþ1 þTðQj;kÞ. Since Qi;j þ Qj;k is of double-star cover number 1, it follows that TðQj;kÞ � DSp
or TðQj;kÞ � DSq. We consider only the case that TðQj;kÞ � DSp because the other case is obtained

similarly. Then TðDSi þ Qj;kÞ ¼ TðDSiÞ þ TðQj;kÞ � Qp;q þ Qp;n�qþ1 þ DSp. This is a contradiction
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because DSi þ Qj;k is of double-star cover number 2, but Qp;q þ Qp;n�qþ1 þ DSp is of double-star

cover number 1. Hence σ is well-defined on N n
2d e. Since T preserves double-star cover number 2, it

implies that σ is a permutation on N n
2d e. Next, we extend σ to be a half-mapping on Nn.

Now we consider the images of the quadrilateral cells. Let Qi;j 2 Ω. Without loss of generality, we
may assume that i; j 2 N n

2d e. Then, TðQi;jÞ � TðDSiÞ � DSσðiÞ and TðQi;jÞ � TðDSjÞ � DSσðjÞ. This implies

that TðQi;jÞ � QσðiÞ;σðjÞ þ QσðiÞ;n�σðjÞþ1: Since TðQi;jÞ is nonzero, Boolean matrices F ¼ ½fi;j� and G ¼ ½gi;j�
can be constructed as follows. Let fi;i ¼ 0 ¼ fi;n�iþ1 for all i 2 Nn and

fi;j ¼ 0; if TðQi;jÞ � QσðiÞ;σðjÞ;
1; if TðQi;jÞQσðiÞ;σðjÞ

�

for all i; j 2 Nn with i�j. Also, let gi;i ¼ 0 ¼ gi;n�iþ1 for all i 2 Nn and

gi;j ¼ 0; if TðQi;jÞQσðiÞ;n�σðjÞþ1;
1; if TðQi;jÞ � QσðiÞ;n�σðjÞþ1

�

for all i; j 2 Nn with i�j. Note that if fi;j ¼ 1, then gi;j ¼ 1 because TðQi;jÞ ¼ QσðiÞ;n�σðjÞþ1. This implies
that F � G. We can conclude that

(i) if TðQi;jÞ ¼ QσðiÞ;σðjÞ, then TðQi;jÞ ¼ PσQi;jðPð0Þσ þ Pð0Þσ Þt; and

(ii) if TðQi;jÞ ¼ QσðiÞ;n�σðjÞþ1, then TðQi;jÞ ¼ PσQi;jðPð1Þσ þ Pð1Þσ Þt; and

(iii) if TðQi;jÞ ¼ QσðiÞ;σðjÞ þ QσðiÞ;n�σðjÞþ1, then TðQi;jÞ ¼ PσQi;jðPð0Þσ þ Pð1Þσ Þt.

Thus, for each A 2 BSð0Þn , it follows that

TðAÞ ¼ ∑
Qi;j2ΩA

PσQi;jðPðfi;jÞσ þ P
ðgi;jÞ
σ Þt:

Consequently, T is induced by ðσ; F;GÞ, where σ is a half-mapping on Nn and F;G 2 BSð0Þn ðB Þ
with F � G.

Furthermore, if n is odd, then there exists s 2 N n
2d e such that σðsÞ ¼ n

2

� �
. It follows that, for each

t�s, QσðsÞ;σðtÞ ¼ QσðsÞ;n�σðtÞþ1. That is fs;t ¼ 0 and gs;t ¼ 1 for all t�s. Hence F<sG.

Next, we count the number of such linear transformations. We say that Λi;j is free if ði; jÞ‚ [
t�s

Λs;t.
The following table shows the possible elements of FΛi;j and GΛi;j when Λi;j is free.

Case 1. n is even. Since the number of half-mappings σ is n
2 ! and there are nðn�2Þ

8 sets of Λi;j, the

number of such linear transformations is n
2 !3

nðn�2Þ
4 .

Case 2. n is odd. If σð n
2

� �Þ ¼ n
2

� �
, then the number of half-mappings σ is n

2

� �
! and there are

ðn�1Þðn�3Þ
8 sets of Λi;j which is free. Hence, there exist n

2

� �
!3

ðn�1Þðn�3Þ
4 such possible linear transforma-

tions in this case. On the other hand, if σð n
2

� �Þ� n
2

� �
, then the number of half-mappings σ is n

2

� �
!�

n
2

� �
! and the number of Λi;j being free is n�3

2 whenever i ¼ n
2

� �
and ðn�3Þðn�5Þ

8 , otherwise. This implies

F G

fi;j fi;n�jþ1 gi;j gi;n�jþ1

0 0 0,1 0,1

0 1 0,1 1

1 0 1 0,1

1 1 1 1
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that the number of such possible linear transformations in this case is n
2

� �
! n

2

� �
3

ðn�3Þ2
4 . Therefore, if n is

odd, there are n
2

� �
! 3

ðn�1Þðn�3Þ
4 þ n

2

� �
3

ðn�3Þ2
4

� 	
such linear transformations.

We investigate further that if the condition `the linear transformation T preserves the matrix L’ is
assumed, then, in the proof of Theorem 3.5, the entries of matrices F and G are obtained as follows.
For each i; j 2 N n

2d e, if 1 2 FΛi;j , then GΛi;j ¼ 1f g and GΛi;j 	 0;1f g, otherwise. This leads us to the

following corollary.

Corollary 3.6. Let T : BSð0Þn ðB Þ ! BSð0Þn ðB Þ be a linear transformation. Then

(i) T preserves double-star cover numbers 1 and 2

(ii) TðLÞ ¼ L

if and only if T is induced by ðσ; F;GÞ where σ is a half-mapping on Nn, F�ΛG and F<sG provided n
is odd.

Moreover, the number of such linear transformations is

n
2

j k
! 7

ðn�1Þðn�3Þ
8

n
2
!7
nðn�2Þ

8
;

þ n
2

j k
3

n
2b c�17

ðn�3Þðn�5Þ
8

0
@

1
A;

if nis even;
if nis odd:

8<
:

The following lemma shows the relation between the term rank preservers and the double-
star cover number preservers. The proof is done by using Lemma 3.1(iii) and considering the image
of each quadrilateral cell.

Lemma 3.7. Let T : BSð0Þn ðB Þ ! BSð0Þn ðB Þ be a linear transformation. If T preserves double-star
matrices and TðLÞ ¼ L, then T preserves double-star cover numbers 1 and 2.

The converse of Lemma 3.7 does not hold as the following example shows.

Example 3.8. Let σ : N7 ! N7 be defined by σ ¼ 1 2 3 4 5 6 7
2 4 3 1 5 4 6

� 	
: Moreover, let F ¼ Q1;3

and G ¼ LnQ1;5. Consider the linear transformation T on BSð0Þ7 ðB Þ induced by ðσ; F;GÞ.

Then TðQ1;2Þ ¼ Q2;4, TðQ1;3Þ ¼ Q2;3, TðQ1;4Þ ¼ Q1;2 þ Q1;6, TðQ1;5Þ ¼ Q2;3, TðQ1;6Þ ¼ Q2;4,
TðQ2;3Þ ¼ Q3;4, TðQ2;4Þ ¼ Q1;4, TðQ2;5Þ ¼ Q2;4, TðQ3;4Þ ¼ Q1;3 þ Q1;5 and TðLÞ ¼ LnQ2;5.

The next corollary is obtained from Lemma 3.1(i), Corollary 3.6 and Lemma 3.7.

Corollary 3.9. Let T : BSð0Þn ðB Þ ! BSð0Þn ðB Þ be a linear transformation. Then, the following are
equivalent:

(i) T preserves double-star matrices and TðLÞ ¼ L;

(ii) T preserves the set of all matrices of term ranks 2 and 4, and TðLÞ ¼ L;

(iii) T preserves double-star cover numbers 1 and 2, and TðLÞ ¼ L;

(iv) T is induced by ðσ; F;GÞ where σ is a half-mapping on Nn, F�ΛG and F<sG provided n is odd.
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4. Term rank preservers of bisymmetric matrices over antinegative semirings
Let A ¼ ½ai;j� 2 BSð0Þn ðS Þ. Beasley and Pullman (Beasley & Pullman, 1987) defined the pattern �A of A
to be the Boolean matrix whose ði; jÞth entry is 0 if and only if ai;j ¼ 0. We say that A has an

L-pattern whenever �A ¼ L. Note that the term ranks of A and �A are equal and also the star cover

numbers of A and �A. For a linear transformation T on BSð0Þn ðS Þ, define �T : BSð0Þn ðB Þ ! BSð0Þn ðB Þ by
�Tð�AÞ ¼ ∑

Qi;j2Ω�A

TðQi;jÞ for allA BS_n^(0)ðS Þ:

The following lemma is used to extend the results in BSð0Þn ðB Þ to BSð0Þn ðS Þ. Note that the proof
of this lemma is straightforward so that it is left to the reader.

Definition 4.1. Let T : BSð0Þn ðS Þ ! BSð0Þn ðS Þ be a linear transformation. We say that T is induced by
ðσ;B; F;GÞ if there exist a mapping σ on Nn, a matrix B 2 MnðS Þ and matrices F ¼ ½fi;j�;G ¼ ½gi;j� 2
MnðB Þ such that
TðAÞ ¼ ∑

Qi;j2Ω�A

Pσ A � Qi;j � B
� �

Pðfi;jÞσ þ Pðgi;jÞσ

� �t

for all A 2 BSð0Þn ðS Þ where Ω�A is the set of all quadrilateral cells summing to �A.

We say that T is induced by ðσ;B; FÞ if T is induced by ðσ; B; F;GÞ and F ¼ G.

Lemma 4.2. Let T : BSð0Þn ðS Þ ! BSð0Þn ðS Þ be a linear transformation. Then, T and �T preserve the same
term rank and the same double-star cover number.

The following characterizations are obtained by applying the results of the previous section
and Lemma 4.2. Simply use the same methods of the proof of Corollary 3.3 in (Beasley et al., 2012)
but with quadrilateral cells in place of digon cells.

Proposition 4.3. Let T : BSð0Þn ðS Þ ! BSð0Þn ðS Þ be a linear transformation. Then the following are
equivalent:

(i) T preserves double-star matrices and T strongly preserves L-pattern;

(ii) T preserves term ranks 2 and 4, and T strongly preserves L-pattern;

(iii) T is induced by ðσ;B; FÞ where σ is a half-permutation, F is a tetrasymmetric matrix and B 2
BSð0Þn ðSÞ is the matrix of L-pattern.

Proposition 4.4. Let T : BSð0Þn ðS Þ ! BSð0Þn ðS Þ be a linear transformation. Then the following are
equivalent:

(i) T preserves double-star matrices and T preserves L-pattern;

(ii) T preserves the set of all matrices of term ranks 2 and 4, and T preserves L-pattern;

(iii) T preserves double-star cover numbers 1 and 2, and T preserves L-pattern;

(iv) T is induced by ðσ; B; F;GÞ where σ is a half-mapping on Nn, F�ΛG and F<sG provided n is odd

and B 2 BSð0Þn ðS Þ is the matrix of L-pattern.

5. Conclusion
A new standard form is carefully given in order to characterize linear transformations preserving
term ranks of bisymmetric matrices over semirings with some certain conditions. In this research,
we investigate term rank preservers on bisymmetric Boolean matrices. The number of such linear
transformations is also determined. Besides, the results on Boolean matrices are extended to
matrices over semirings. Moreover, the characterizations of linear transformations preserving the
special kind of the term rank, which is called the double-star cover number, on bisymmetric
matrices over semirings are provided.

In our opinion, many questions can be further studied as shown in the following examples.
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(1) Is it possible to drop the condition that all entries of diagonal and antidiagonal lines of
bisymmetric matrices must be zero?

(2) Are there other characterizations of term rank preservers on bisymmetric matrices?

(3) What are characterizations of other rank preservers on bisymmetric matrices?
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