Examining molluscs as bioindicators of shrimp aquaculture effluent contamination in a southeast Asian mangrove

Alison H. Hong, Kathryn E. Hargan*, Branwen Williams, Bunlung Nuangsaeng, Sarawut Siriwong, Pisut Tassawad, Chatdanai Chaiharn, Marc Los Huertos

ARTICLE INFO

Keywords:
Molluscs
Metalloid contamination
Oceanic mangroves
Shrimp aquaculture
Biomagnification
Thailand

ABSTRACT

This study evaluates the presence of metalloid contamination from shrimp aquaculture effluent in a nearby mangrove ecosystem in Khung Krabaen Bay (KKB), Thailand. Our objectives were to: (1) examine how sediment metalloid concentrations change spatially in KKB relative to the aquaculture ponds; (2) compare mollusc trophic dynamics of elements associated with shrimp aquaculture; and (3) determine if certain mangrove mollusc species present better ecological indicators of aquaculture elemental contamination. We analyzed targeted elemental concentrations (As, Mn, Cu, Zn, Cr, Pb) in sediments sampled at increasing distance from intensive shrimp aquaculture and within the tissues of five species of molluscs. Differences in mollusc diet were studied using carbon (δ13C) and nitrogen (δ15N) stable isotopes, and biomagnification and biodilution of metalloids were examined using δ13C and δ15N values to infer trophic position. Elemental concentrations were low in farmed shrimp and pellet food relative to mangrove molluscs, but high in the sediments of drainage ponds filtering pond effluent. Declining elemental concentrations from the aquaculture drainage ponds to the mangrove sediments closest to shrimp farms suggested that the management settling ponds are effective at attenuating metalloid contamination. Large differences in mollusc mean δ13C (-25.8 to -20.1‰) and δ15N (1.9 to 8.3‰) values indicate variable diets across species, and trophically-elevated molluscs had greater marine-based diets resulting in a significant, positive correlation between mollusc δ13C and δ15N values. KKB molluscs biomagnify As, Zn, and Se, whereas declines in Mn and Cu with increasing trophic position indicate biodilution. The metals Pb, Fe, Al, Cr were elevated in the shrimp drainage pond sediments and in the tissues of the gastropods Ellinobium aurisijude, Cerithidea obtusa (both mud grazing), and Nertia lineata (algal grazing at low tide), identifying these gastropod species as probable bioindicators of aquaculture contamination in southeast Asian mangroves. Although we find biomagnification of some elements, mangrove mollusc metalloid concentrations are not likely to be toxicological concern, and in fact, were lower than many mangroves elsewhere impacted by industrial and sewage contamination.

1. Introduction

The deforestation of mangroves for aquaculture raises concern over the loss of ecosystem services, coastal contamination and pollution, and the introduction of nonnative aquaculture species (Goldburg and Naylor, 2005). In particular, common components of shrimp aquaculture effluent contamination are: solid matter (e.g., eroded pond soils), organic matter (e.g., shrimp feed, dead shrimp, shrimp feces), and dissolved metabolites (e.g., ammonia, urea) (Gradlund and Bengtsson, 2001). Most shrimp farms dispose of their effluent into nearby waterways, which run through mangroves and towards the sea (Molnar et al., 2013). Because of the proximity of remaining mangroves to present shrimp culture ponds, aquaculture effluent and its solid component may accumulate within the mangrove environment and in the food web.

Many elements (Zn, Mn, Cu, Fe, etc.) are essential for culturing marine organisms, while others, such as As, Cd, Pb and Hg, are generally non-essential and particularly toxic at high concentrations (Marín-Guirao et al., 2008; Nascimento et al., 2017). Manganese, found within the soybean and wheat ingredients used to manufacture shrimp feed and commonly added to shrimp aquaculture as a pond disinfectant (as potassium permanganate), can accumulate within ponds and be

* Corresponding author.
E-mail address: hhargan@mun.ca (K.E. Hargan).

https://doi.org/10.1016/j.ecolind.2020.106365
Received 4 October 2019; Received in revised form 17 February 2020; Accepted 28 March 2020
Available online 08 April 2020
1470-160X/ © 2020 Elsevier Ltd. All rights reserved.
discharged in pond effluent. While Mn is an important mineral element for shrimp cellular and protein metabolism and formation of skeletal structures, chronic exposure to high Mn concentrations may cause an organism stress and can lead to mortality (Hernroth et al., 2004; Bordean et al., 2014). Furthermore, with water column hypoxia from the degradation of settling organic matter, reduced Mn (Mn\(^{2+}\)) can accumulate to toxic concentrations at the bottom of shrimp ponds (Gibson et al., 2006), which ultimately is rapidly discharged to the environment at the end of shrimp rearing cycles. In addition to Mn, other elements often associated with shrimp-aquaculture include: As, Cu, Cr, Zn, Cd, and Pb (Nemati et al., 2009; Tu et al., 2011; Cheng et al., 2013).

Sediment element concentrations provide time-integrated signals of metalloid contamination. However, sediment elemental concentrations are also affected by sediment characteristics that vary across the land-to-sea transition within mangrove forests, including particle size, organic carbon content, and redox conditions (Marchand et al., 2011). Measuring metalloid bioaccumulation can help establish the bioavailability of metalloid(s) in the environment, offering time-integrated estimates on the proportion of total elemental load that is of ecological relevance (Rainbow, 1995). Mangrove molluscs represent ideal biomonitors of environmental metalloid(s) because of their large size (i.e. enough tissue for analyses), long lifespan, limited movement, and are abundant in mangroves (Elder and Collins, 1991; Zhou et al., 2008). In molluscs, metalloid bioaccumulation is influenced by exposure routes (diet and solution) and geochemical effects on bioavailability (Rainbow, 1995). Therefore, examination of metalloid bioaccumulation across a range of mollusc species recognizes different sources of metalloid contamination, as well as physiological differences in metal regulation (Rainbow, 1995; Zhou et al., 2008).

Carbon and nitrogen stable isotope (13C, 15N) analyses are important in the study of elemental trophic dynamics (Quinn et al., 2003; Ikemoto et al., 2008; Revenga et al., 2012). 15N values fractionate isotopically between a consumer and its prey (approximately + 3‰), and thus is an useful tool to track an organism’s trophic position in a food web, reflecting long-term feeding behavior and ingested prey (Matthews and Mazumder, 2008). Regressing the concentrations of an element against 15N values allows for the quantification and modeling of metal and metalloid trophic transfer in food webs (Croteau et al., 2005). By contrast, 13C values demonstrate lower trophic fractionation between a consumer and its diet (+ 0.8-2‰), and as such, are useful for evaluating sources of primary production within food webs (Vander Zanden and Rasmussen, 2001).

This study examines the combined use of sediments and mangrove molluscs as environmental indicators of metalloid contamination in an ecosystem adjacent to intensive shrimp aquaculture. Given a wide variety in mangrove physical habitat (prop roots, downed woody debris, forest floor) and chemical gradients (e.g. tidal flushing and salinity), we hypothesize that mangrove mollusc niches yield differences in trophic position. This difference in trophic position (mean 15N value) amongst mangrove molluscs in KKB may amplify the concentrations of some elements in the tissues of high-trophic molluscs. Thus, the study objectives were to: 1) examine whether sediment elemental concentrations change spatially in KKB relative to the aquaculture ponds; 2) compare the trophic dynamics of elements associated with shrimp aquaculture (e.g., Mn, As, Cu, Zn); and 3) determine if certain mangrove mollusc species present better ecological indicators of aquaculture elemental contamination in mangroves. The trophic dynamics of aquaculture-associated metalloid(s) among molluscs are evaluated using linear regressions between log-transformed concentrations of elements and 15N values. Here, a statistically significant and positive slope indicates biomagnification of trace elements in the food web, whereas a statistically significant and negative slope indicates trophic dilution of an element. Using multivariate analyses, we compare the elemental concentrations in the sediments of ponds filtering shrimp aquaculture effluent, canal, mangrove and bay sediments to mollusc elemental concentrations to ascertain whether tissue elemental concentrations of some molluscs more closely resemble that of the shrimp farm sediments.

2. Materials and methods

2.1. Study site description

The study was conducted in the mangrove fringing Khung Krabaen Bay (KKB) (12°33′–12°36′, 101°53′–101°55′E, Fig. 1), located in the Khlong Khut sub-district, Tha Mai district, of the Chanthaburi province in Thailand (Fig. 1). Approximately 260 km southeast from Bangkok, KKB is a rural area of Thailand, with many of its inhabitants fishing or farming for a living. The mangrove is part of the Khung Krabaen Bay Royal Development Study Centre, established in 1981 by the late Majesty King Bhumibol Adulyadej of Thailand. Approximately 264 ha encompasses the mangrove forest, which is about 200–500 m wide from landward to seaward edge, and shrimp farms are locations around the bay encompassing ~ 160 ha (Thimdee et al., 2003; Google Earth Pro measurement tool, Fig. 1). Shrimp aquaculture in KKB yields ~ 2080 tons/year (mean from 2006 to 2013) in shrimp and shrimp products. During our sampling we observed that Ceroeps tagal were more abundant towards the landward edge of the mangrove although still found throughout the mangrove; Rhizophora apiculata and R. mucronata were most abundant in the intermediate zone of the mangrove; and Avicennia species became more common towards the seaward edge. Lumnitzera littorea and L. racemosa were also common throughout the KKB mangrove, although less so towards the seaward edge. KKB is a semi-enclosed, oval-shaped bay about 4.6 km long, 2.6 km wide, and between 0.7 and 3.0 m deep. A diurnal tide in KKB replaces ~ 86% of the bay water during each tidal cycle (Thimdee et al., 2003).

2.2. Sampling design and sample collection

Samples were collected from three “impact” transects that receive effluent from nearby shrimp ponds and one “reference” transect which receives no effluent from shrimp ponds, but is located within the same bay as the impact transects (Fig. 1). Sediment and mollusc samples were...
collected during the dry season in March 2018 and at the start of the wet season in May 2018. The mangrove forest along the impact transects were accessed by canals that direct the shrimp pond effluent through the mangrove to KKB. No canal spans the reference transect, and interior mangroves along this transect were accessed by an educational trail. Samples were collected along each transect approximately every 50 m in order to account for the differences that may arise in metal(loid) levels for samples closer to the ocean compared to those closer to shrimp farms. At every 50 m interval along each transect, a circular (14 m diameter) sampling plot was established. One surface sediment sample (top ~ 1 cm) was collected close to the center of the plot and molluscs were collected within the circumference of the plot. Molluscs were identified to the lowest taxa when possible (see Supplementary material for a general description of each species, a list of identification resources, and mollusc photos) and include: Nerita lineata (common nerite), Littoraria sp. (periwinkle), Ellolobium aurisjuda, Thais gradata (drill), Cerithidea obtusa (mud creeper), and Isognomon epiphium (tree/leaf oyster). The number of molluscs collected differed for each species due to their size differences and the requirement that enough tissue was obtained for both elemental and stable isotope analyses. In each plot, 1–2 individuals of each T. graduada, E. aurisjudae, and I. epiphium, and 4–5 individuals of each N. lineata, Littoraria sp., and C. obtusa were collected when present.

At the time of shrimp harvest in May 2018, Penaeus monodon (Asian tiger shrimp), shrimp feed, and shrimp pond drainage sediments were collected from three farms that discharge their effluent into canals that run into the adjacent mangrove (Fig. 1).

2.3. Sample preparation

At Burapha University Marine Technology Lab, mollusc and farmed shrimp samples were placed in a laboratory freezer overnight at −20 °C. Samples were then thawed, and the soft tissues removed with tweezers from the mollusc shells, and shrimp carapace. In cases where the gastropods had a deep shell whorl, shells were crushed with a mallet and the soft tissue separated from the shell with tweezers. All mollusc soft tissue was utilized and individuals combined to form one sample per species per plot. Mollusc and shrimp tissues and sediment samples were dried in a lab oven at 70 °C for ∼12 h.

2.4. Elemental analysis

To prepare samples for acid digestion, the shrimp, snail, and oyster tissues were finely ground with a mortar and pestle. Sediment samples were ground and homogenized with a mortar and pestle and sifted with a stainless-steel sieve with a mesh size of 35-µm. All elemental analyses were performed by SGS North American Inc. (an accredited National Environmental Laboratory) in Dayton, New Jersey. The Environmental Protection Agency (EPA) method 3050B for acid digestion of sediments, sludges, and soils (U.S. EPA, 1996) was used to prepare the samples for metal analyses by inductively coupled plasma-mass spectrometry (ICP-MS). To summarize, ∼0.5 g (dry weight) of sample was digested with repeated additions of reagent-grade nitric acid (HNO3) and hydrogen peroxide (H2O2). The resultant digestate was reduced in volume while heating and then diluted to a final volume of 100 mL. The EPA 6020B (SW-846) method (U.S. EPA, 2014) was used to determine the concentration of 22 elements on the ICP-MS (limits of detection in µg/g): Al (1 3 0), Sb (5.0), As (1.3), Ba (2.5), Be (1.3), Cd (1.3), Ca (6 3 0), Cr (5.0), Co (1.3), Cu (5.0), Fe (1 1 0), Pb (1.3), Mg (6 3 0), Mn (10), Ni (5.0), K (6 3 0), Se (1.3), Ag (1.3), Na (6 3 0), Ti (1.3), V (5.0), Zn (25). Sample preparation for Hg analyses and quantification of sample Hg concentration (limit of detection = 0.064 µg/g) followed the EPA method 7471B (W-846) (U.S. EPA, 2007) for a cold-vapor atomic absorption procedure. Quality control was ensured by running internal standards, blanks, and certified reference material.

2.5. Stable isotope analysis (δ13C, δ15N)

Approximately 1.0 mg of molluscs was utilized for stable isotope analysis. The stable isotope methods for particulate organic matter, sediment organic matter, and mangrove leaves are published in Hargan et al. (2020). Isotopic ratios were analyzed using an Isotope Ratio Mass Spectrometer (IRMS) (ThermoFisher Delta V Plus) at The David W. and Claire B. Oxtoby Environmental Isotope Lab (Pomona College, Claremont, CA). Acetanilide (C8H9NO) was used as an internal standard to determine the analytical precision for δ13C (~29.53‰) and δ15N (1.18‰) (Indiana University, ID). The standard deviation on 10 aliquots of the same sample was lower than 0.2‰ for δ13C and δ15N. Samples were calibrated to national and international standards: USGS540 and USGS24 for 13C, and USGS40 and IAEA N-2 for 15N. Results of stable isotope analyses are reported in δ units where δ = ([Rsample/Rstandard] − 1) × 1,000. Rsample are the ratios of the isotopes (i.e. 13C/12C, 15N/14N) in samples, and Rstandard are the ratios of isotopes in the international standards, unique for each element. δ13C is reported relative to atmospheric nitrogen and δ13C relative to Vienna Pee Dee Belemnites, and isotopes are expressed in units of per mill (‰).

2.6. Data analyses

To visualize differences in mollusc trophic position, δ13C values were plotted against δ15N values with isotope signatures for mangrove leaves, particulate organic matter (POM), and sediment organic matter (SOM) collected along the land-to-sea transects (Hargan et al., 2020). One-way analysis of variance (ANOVA) with pairwise Tukey tests were used to test whether the metal concentrations in the sediments from different habitats (i.e. shrimp farm, canal, mangrove, marine) significantly differed. Tests for normality (Shapiro-Wilk’s test) rendered significantly non-normal distributions (p > 0.05) for all elements and normal distributions for isotopes. Elements were log10 transferred prior to one-way ANOVAs and only for Cr concentration was a Kruskal-Wallis ANOVA on ranks used as this transformed element maintained a non-normal distribution. To test whether mollusc elemental concentrations were significantly different between impact transects and reference transect, we first examined the differences in the mean elemental concentrations of molluscs species between impact transects using an ANOVA. There was no significant difference in species elemental concentrations amongst impact transects. Therefore, to avoid pseudo-replication, we averaged the species elemental concentrations across the three impact transects and compared to mean species concentrations on the reference transect using a paired t-test.

Trends in element concentrations with changing trophic level as measured by δ15N in molluscs were assessed using linear regression analysis, with element concentration [(element)] log10 transformed. Stable nitrogen isotopes for molluscs were not corrected using basal, primary producer δ15N values. The sole primary producers with measured δ15N in our study are mangrove tree leaves (e.g., Rhizophora apiculata). Many of the snails are known opportunistic grazers, likely consuming algal sources and detritus when available (Christensen et al., 2001; Lee et al., 2001).

Mangrove elemental concentrations were summarized through a principal component analyses (PCA) including all sediment, aquaculture, and mollusc samples (n = 68). Samples were log-transformed prior to PCA analysis to equalize the variance among the different elements. This unconstrained ordination procedure was used to examine how the shrimp pond, sediment, and molluscs samples varied with respect to elemental composition. Among the 23 elements, only those that registered concentrations above detection limit (DL) in at least half of the samples were included in the PCA. If < 50% of measured variables fell below DL, an element was included and samples with elemental measurements below the DL were approximated using the DL of variable divided by the square root of 2 (Hornung and Reed, 2018).
3. Results

3.1. Sediments

Mangrove sediment elemental concentrations did not differ between the reference and impact transects (p > 0.05). Mean [As] significantly differed among the sediment groups (One-way ANOVA, df = 3, F = 3.2, p = 0.038); although, this difference is largely driven by higher [As] in the shrimp farm sediments (10.3 ± 5.2 µg/g) than in the mangroves (4.9 ± 2.3 µg/g) (q = 4.3, p = 0.027), with more similar [As] between canal (4.8 ± 1.3 µg/g) and KKB sediments (5.8 ± 1.3 µg/g) (Table 1). Sediment [As] across the shrimp ponds gradually increased from land-to-sea (Fig. 2). Mean [Cu] were highest in the drainage ponds (69.2 ± 63.6 µg/g), yet [Cu] were still nine times higher in canal (18.4 ± 22 µg/g) compared to KKB sediments (5.8 ± 1.3 µg/g) (Table 1). This yielded significant differences in mean sediment [Cu] between all KKB habitats (One-way ANOVA, df = 3, F = 15.5, p < 0.001), although differences between shrimp pond [Cu] and canal [Cu] (Tukey test, q = 3.7, p = 0.07) and the canal and mangrove [Cu] (Tukey test, q = 1.8, p = 0.57) were insignificant. Manganese concentrations ranged from 51 ± 30 µg/g in mangrove sediments to 221 ± 67 µg/g in KKB sediments, with significantly higher [Mn] measured in KKB sediments relative to the mangrove (Tukey test, q = 7.9, p < 0.001) and canal (q = 4.4, p = 0.022) (Table 1). Overall, this resulted in a gradient of increasing sediment [Mn] from land-to-sea (Fig. 2). Average [Pb] in sediments were highest in mangrove (4.9 ± 2.3 µg/g) (Tukey test, q = 4.3, p = 0.027), with more similar [As] between canal (4.8 ± 1.3 µg/g) and KKB sediments (5.8 ± 1.3 µg/g) (Table 1). Therefore, redundant variables were identified with a Pearson correlation matrix (p ≤ 0.05) with Bonferroni-adjusted probabilities (Supplementary File, Table S1). Pb, Al, and Fe were significantly correlated (see Table S1), and grouped using Al, which explained the largest amount of variation. Mn was also correlated to Pb and Fe, but not Al, so it was left in the PCA, leaving 10 elements included in the PCA ordination.

3.2. Farmed shrimp and shrimp feed

Shrimp feed mean [Mn] (39.2 µg/g) was lower than the average [Mn] of all mollusc species (Table 1); however, shrimp feed average [Mn] was higher than the average [Mn] in Penaeus monodon (2.8 ± 0.4 µg/g) (Table 1). Shrimp feed also had a slightly higher average [Zn] (66.0 µg/g) compared with mean P. monodon (Zn) (62.0 ± 9.5 µg/g) (Table 1). The average [Cu] was similar between shrimp feed (31.9 µg/g) and P. monodon samples (31.0 ± 9.3 µg/g) (Table 1). Arsenic concentrations were lowest in the shrimp feed (<1.3 µg/g) compared with average [As] in P. monodon (2.7 ± 0.5 µg/g) (Table 1) and higher concentrations in mangrove mollusc species.

3.3. Mangrove mollusc stable carbon and nitrogen isotopes (δ13C, δ15N)

The δ13C and δ15N values significantly positively correlated among the molluscs (r2 = 0.411, < 0.001, Table 2, Fig. 3A). Thus, the significant relationships present between δ13N values and an element are also often true for δ13C values and the same element (Table 2). Mollusc samples captured a broad range in δ13C and δ15N values from −27.2 to −17.3‰ and 0.1 to 10.3‰, respectively. *Thais gradata* had the highest mean δ13N value (8.3‰, n = 4) and mean δ13C value (−20.1 ± 2.1‰), while *C. obtusa* had the lowest mean δ13N value (1.9‰, n = 5) (Table 1). Mean mollusc tissue δ13C values were enriched relative to mean mangrove leaf δ13C values (+5.4–13.1‰), mean mangrove SOM δ13C values (+2.9–8.6‰), and mean shrimp farm POM δ13C values (+2.3–8.0‰) (Fig. 3B).

3.4. Trophic relationships to elements

Across mollusc samples, elements that were routinely above instrumental detection limit were: Cu, As, Mn, Zn, Cr, Fe, Al, Pb, and Se; and therefore, we focus on trends between these metal(loid)s, mollusc diet (inferred using known diet preferences and δ13C values), and trophic position (inferred with δ15N values). Of these elements, we found no significant difference of transect type (comparing the mean species elemental concentrations across the impact transects to the

Table 1

<table>
<thead>
<tr>
<th>Sediments & aquaculture</th>
<th>n</th>
<th>δ15N (%)</th>
<th>δ13C (%)</th>
<th>As (µg/g)</th>
<th>Cu (µg/g)</th>
<th>Zn (µg/g)</th>
<th>Mn (µg/g)</th>
<th>Fe (mg/g)</th>
<th>Cr (µg/g)</th>
<th>Pb (µg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangrove</td>
<td>12</td>
<td>3.1 ± 0.9</td>
<td>-28.7 ± 0.4</td>
<td>4.9 ± 2.3</td>
<td>10.8 ± 15</td>
<td>19.7 ± 7</td>
<td>51 ± 30</td>
<td>6.9 ± 4.3</td>
<td>8.6 ± 4.5</td>
<td>5.5 ± 3.1</td>
</tr>
<tr>
<td>Marine KKB</td>
<td>8</td>
<td>3.8 ± 0.6</td>
<td>-24.5 ± 0.6</td>
<td>5.4 ± 1.3</td>
<td>2.1 ± 1.2</td>
<td>8.1 ± 3</td>
<td>221 ± 67</td>
<td>10.1 ± 2.3</td>
<td>7.4 ± 2.4</td>
<td>5.3 ± 2.4</td>
</tr>
<tr>
<td>Canal</td>
<td>5</td>
<td>4.1 ± 0.2</td>
<td>-271.1 ± 0.7</td>
<td>4.8 ± 1.3</td>
<td>18.4 ± 22</td>
<td>23.5 ± 9</td>
<td>77 ± 49</td>
<td>7.5 ± 3.4</td>
<td>8.5 ± 3.6</td>
<td>4.9 ± 2.3</td>
</tr>
<tr>
<td>Shrimp pond</td>
<td>5</td>
<td>4.4 ± 0.7</td>
<td>-251.1 ± 1.4</td>
<td>10.3 ± 5.2</td>
<td>69.2 ± 64</td>
<td>72.1 ± 24</td>
<td>185 ± 129</td>
<td>22.6 ± 10.9</td>
<td>22.1 ± 10.1</td>
<td>9.2 ± 4.1</td>
</tr>
<tr>
<td>Shrimp feed</td>
<td>3</td>
<td>2.5 ± 0.1</td>
<td>-25.4 ± 0.1</td>
<td><1.3</td>
<td>31.9</td>
<td>66.0</td>
<td>40</td>
<td>0.42 ± 0</td>
<td>b.d.</td>
<td>b.d.</td>
</tr>
<tr>
<td>Penaeus monodon</td>
<td>3</td>
<td>5.0 ± 0.2</td>
<td>-23.1 ± 0.1</td>
<td>2.7 ± 0.5</td>
<td>31.0 ± 9</td>
<td>62.0 ± 9</td>
<td>2.8 ± 0.4</td>
<td>b.d.</td>
<td>b.d.</td>
<td>b.d.</td>
</tr>
<tr>
<td>Molluscs</td>
<td></td>
</tr>
<tr>
<td>Cerithidea obtusa</td>
<td>5</td>
<td>1.9 ± 1.2</td>
<td>-248 ± 1.2</td>
<td>5.1 ± 1.6</td>
<td>100.8 ± 52</td>
<td>66.0 ± 32</td>
<td>192 ± 149</td>
<td>0.8 ± 0.3</td>
<td>9.3 ± 4.9</td>
<td>b.d.</td>
</tr>
<tr>
<td>Litortina sp.</td>
<td>5</td>
<td>3.3 ± 1.8</td>
<td>-238 ± 2.2</td>
<td>7.4 ± 2.1</td>
<td>874.4 ± 31</td>
<td>118.2 ± 66</td>
<td>86 ± 20</td>
<td>1.1 ± 0.5</td>
<td>7.1 ± 3.5</td>
<td>1.3 ± 0.5</td>
</tr>
<tr>
<td>Nerita lineata</td>
<td>9</td>
<td>3.5 ± 2.6</td>
<td>-255.5 ± 1.9</td>
<td>6.1 ± 1.2</td>
<td>47.4 ± 25</td>
<td>69.5 ± 35</td>
<td>59 ± 22</td>
<td>0.8 ± 0.3</td>
<td>13.5 ± 6.7</td>
<td>1.0 ± 0.3</td>
</tr>
<tr>
<td>Ellobium antennulare</td>
<td>6</td>
<td>4.9 ± 0.8</td>
<td>-258.8 ± 1.3</td>
<td>8.8 ± 1.4</td>
<td>90.3 ± 21</td>
<td>150.2 ± 65</td>
<td>51 ± 21</td>
<td>2.5 ± 0.8</td>
<td>9.6 ± 9.9</td>
<td>2.1 ± 0.9</td>
</tr>
<tr>
<td>Isognomon epiphymum</td>
<td>6</td>
<td>7.0 ± 0.6</td>
<td>-225.2 ± 1.2</td>
<td>13.4 ± 2.3</td>
<td>11.7 ± 5</td>
<td>19385.8 ± 835</td>
<td>211 ± 304</td>
<td>1.3 ± 1.4</td>
<td>4.9 ± 2.9</td>
<td>1.7 ± 1.5</td>
</tr>
<tr>
<td>Thais gradata</td>
<td>4</td>
<td>8.3 ± 2.0</td>
<td>-201.2 ± 2.1</td>
<td>20.1 ± 15</td>
<td>197.4 ± 228</td>
<td>657.8 ± 536</td>
<td>18 ± 15</td>
<td>0.5 ± 0.4</td>
<td>20.5 ± 24.2</td>
<td>b.d.</td>
</tr>
</tbody>
</table>
reference transect) on mollusc species body concentration. Mercury concentrations were above instrumental detection limits in all E. aurisjudae samples (0.10 ± 0.03 µg/g) and 5 of 7 Nerita lineata samples (0.09 ± 0.03 µg/g); otherwise [Hg] was below detection for more than half of the other mollusc species as well as all sediment samples.

Minimum and maximum [As] ranged from 2.2 to 41.3 µg/g for individual molluscs. The highest mean [As] was measured in T. gradata (30.2 ± 15.7 µg/g, n = 4). For each individual species of mollusc sampled, [As] increased with increasing δ15N values. The strongest relationship measured between an element and both δ15N and δ13C values was for [As] (Table 2), with a significant, positive correlation between log[As] and δ15N values (n = 33, r² = 0.756, p < 0.001), as well as δ13C values (r² = 0.374, p < 0.001) (Table 2, Fig. 4A, Fig. S2).

Average mollusc [Zn] ranged from 42.9 to 2960 µg/g (Table 1). Within species, C. obtusa, Littoraria sp., and E. aurisjudae (18–86 µg/g), while [Mn] were highest in I. ephippium (211 ± 304 µg/g) and C. obtusa (192 ± 149 µg/g) (Table 1, Fig. 4C). Standard deviation in [Mn] was highest for C. obtusa (211 ± 304 µg/g) and I. ephippium (453 and 722 µg/g) than oyster samples (of the three collected along the reference transect) had [Mn] several orders of magnitude higher (453 and 722 µg/g) than oyster samples collected along the impact transect. Therefore, [Mn] decreased as δ15N value increased for each snail species except I. ephippium tree oysters (Fig. 4C). Mollusc [Mn] significantly decreased with increasing δ15N values (r² = 0.547, p < 0.001), and δ13C values (r² = 0.303, p < 0.001) (Table 2, Fig. 4B). In contrast, a significant negative regression between δ13C values and log [Mn] was not observed (Table 2, Fig. S2).

Average mollusc [Cu] ranged from 8.0 to 537 µg/g. Cu concentrations increased with increasing δ15N value in E. aurisjudae and C. obtusa. However, [Cu] decreased with increasing δ15N value in I. ephippium and T. gradata (Fig. 4D). Isognomon ephippium had low [Cu] relative to all other molluscs. Two N. lineata samples with high δ15N values also had low tissue [Cu]. An insignificant, negative slope represents the relationship between δ15N values and log[Cu] (Table 2, Fig. 4D). A negative slope between mollusc δ15N values and log[Cr] was observed (p = 0.325) (Table 2, Fig. 4E). Additionally, we found a positive relationship between mollusc δ15N and log[Se] (p = 0.05) (Fig. 4F). No relationships were observed between mollusc δ15N and δ13C values, and log[Pb] and log[Al] (Table 2).

3.5. Comparisons between sediment and molluscs using multivariate analysis

Axis 1 and 2 of the PCA explained 71% of variation in elemental

Table 2
Linear regression analysis of mangrove mollusc elemental concentration (µg/g d.w.) versus tissue δ13C and δ15N stable isotope ratios (%). Relationships with both a p-value < 0.05 and r² > 0.3 are bolded.

<table>
<thead>
<tr>
<th>Element</th>
<th>n</th>
<th>Slope Intercept</th>
<th>r²</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ13C vs. δ15N</td>
<td>33</td>
<td>0.697</td>
<td>21.409</td>
<td>0.411</td>
</tr>
<tr>
<td>log10As vs. δ15N</td>
<td>33</td>
<td>0.0723</td>
<td>0.584</td>
<td>0.756</td>
</tr>
<tr>
<td>log10Mn vs. δ15N</td>
<td>33</td>
<td>−0.0894</td>
<td>2.176</td>
<td>0.253</td>
</tr>
<tr>
<td>log10Cu vs. δ15N</td>
<td>33</td>
<td>−0.0511</td>
<td>1.960</td>
<td>0.0939</td>
</tr>
<tr>
<td>log10Zn vs. δ15N</td>
<td>33</td>
<td>0.164</td>
<td>1.502</td>
<td>0.547</td>
</tr>
<tr>
<td>log10Se vs. δ15N</td>
<td>33</td>
<td>−0.0210</td>
<td>0.993</td>
<td>0.312</td>
</tr>
<tr>
<td>log10Cr vs. δ15N</td>
<td>33</td>
<td>0.0372</td>
<td>0.0661</td>
<td>0.126</td>
</tr>
<tr>
<td>log10Fe vs. δ15N</td>
<td>33</td>
<td>−0.00764</td>
<td>0.0866</td>
<td>0.00673</td>
</tr>
<tr>
<td>log10Al vs. δ15N</td>
<td>33</td>
<td>−0.0373</td>
<td>2.805</td>
<td>0.0417</td>
</tr>
</tbody>
</table>

Fig. 2. Mean (± standard deviations) sediment element concentrations (µg/g d.w.) for A) manganese (Mn), B) arsenic (As), C) lead (Pb), and D) chromium (Cr) along a gradient of increasing distance from the shrimp farms, beginning with the shrimp farm drainage ponds, canal and mangrove samples closest to the farm, and progressing out into the Khung Krabaen Bay (KKB) marine system. Grey circles and standard deviation bars correspond to the element concentrations plotted in µg/g of organic carbon (OC) on the right y-axis.
concentrations among canal, mangrove, shrimp drainage pond, and bay sediments, molluscs, and farmed shrimp samples (n = 68) (Fig. 5). The PCA distinguished marine sediments with high [Al] and shrimp pond drainage sediments by high [Mn]. Trophically-elevated T. gradata and L. ephippium are represented by high [Zn] and [As] (Fig. 5). Cerithidea obtusa and N. lineata samples are clustered closest to the shrimp drainage pond sediments (Fig. 5). In general, primary consumers (Littoraria sp., E. aurisjudae, N. lineata) are distinguished by high [Cu], [Ca], and [Mg] (Fig. 5).

4. Discussion

4.1. Sediment elemental concentrations

Sediment elemental concentrations were significantly higher in the shrimp drainage ponds than all other sediments analyzed in KKB (Table 1). Since metal(loid) concentrations were low in the shrimp and shrimp food (Table 1), this suggests that collectively the dense number of shrimp, shrimp feed, and shrimp feces contributes to elevated elemental concentrations that accumulate over time in the drainage ponds. In general, the prawn P. monodon accumulates some metals under particular aquaculture pond conditions and does not accumulate other metals regardless of the pond conditions (Hashmi et al., 2002). This means that often there can be a decoupling effect between concentrations in shrimp tissue and the water and sediments, where although low concentrations are measured in shrimp (i.e. little bioaccumulation) they can be high in the water and sediments. Thus, even in relatively pristine landscapes with regards to heavy metal contamination, significant increases in sediment metals (Zn, Cu, Pb) close to aquaculture ponds occur suggesting that trace metal enrichment in the sediments may be attributed to the aquaculture pond effluents (Mendiguchía et al., 2006). In mixed-species aquaculture in natural wetland tidal pools of Deep Bay, Hong Kong, the sediments collected from sites closest to the aquaculture also contained higher Zn, Cu, Ni and Cd concentrations than those sediments collected from the seaward sites (Cheung and Wong, 2006); also suggesting that the large abundance of animals in coastal areas produce trace metal contamination.

In our study system, the abundances of elements in the shrimp drainage ponds and mangroves were very similar, with concentrations in sediments of the ponds and mangroves following the distribution from Fe > Mn > Zn > Cu > Cr > Pb > As (Table 1). In contrast, abundances of elemental concentrations in marine KKB sediments were distinct with elemental abundances following the pattern of Fe > Mn > Zn > Cr > Pb > As > Cu (Table 1). These differences were likely due to separate sources of elements to each system, but also changes in abiotic conditions including salinity and redox potential, which contribute to the settling and resuspension of elements (Marchand et al., 2011). For example, the release of effluent within an Avicennia mangrove stand modified the duration of waterlogging and thus modified the redox conditions, which influenced the carrier phase of heavy metals, becoming largely associated with sulfides during effluent release (Marchand et al., 2011). Metals were thus less mobile, and consequently when the mangrove received effluents, they acted as a sink for trace metals (Marchand et al., 2011). In KKB, shrimp drainage ponds first receive effluent followed by the canals and mangroves, indicating that despite their landward location with less inundation at high tide, these areas of the bay would be water logged for a longer time, attenuating some of the highest elemental contamination in the drainage ponds and canals closest to the farms. However, in KKB elemental concentrations still rapidly declined from the drainage pond sediments to the mangrove and canal sediments closest to shrimp farms (Fig. 2). This implies that the drainage ponds are effective at attenuating elemental contamination and/or that metal(loid)s are flushed beyond the mangrove into the marine ecosystem.

In KKB, canals likely direct shrimp aquaculture effluent beyond the mangroves to the marine environment (Hargan et al., 2020). Here, Mn, As, Cr, and Pb concentrations are high in shrimp pond sediments, low in the mangrove sediments, and increase again in the marine KKB sediments (Fig. 2). However, with our methodology we cannot ascertain the source of these elements in the marine sediments. Overall, we find that KKB mangrove sediment elemental concentrations are similar to unimpacted mangroves studied in Hong Kong (Tam and Wong, 2000; MacFarlane et al., 2007), except that in some cases KKB mangrove sediments have higher [Cr] and [Cu]. Cu and Cr can increase in sediments adjacent to aquaculture (Mendiguchía et al., 2006; Cheung and Wong, 2006) and are associated with ecosystem contamination from untreated sewage (Montgomery and Price, 1979; Revenga et al., 2012). In general, our KKB sediment concentrations are lower than those measured in tropical bays receiving industrial and sewage pollution (Ong Che, 1999; Tam and Wong, 1995, 2000; Defew et al., 2005). KKB elemental

Fig. 3. A) Mollusc stable carbon isotopes (δ^{13}C, ‰) vs stable nitrogen isotopes (δ^{15}N, ‰) with a significant, positive linear regression shown (Table 2). B) Mean mollusc, farmed shrimp (‘F-shrimp’) and shrimp pellet food (‘Food’) δ^{13}C and δ^{15}N values plotted with mean stable isotope values of mangrove leaves, and particulate and sediment organic matter (POM, SOM) sources for the shrimp farms (‘F-POM’, ‘F-SOM’), canals (‘C-POM’), mangrove (‘M – SOM’), and marine KKB (‘KKB-POM’) (from Hargan et al., 2020). The organic matter pools are captured in grey boxes outlined with dashes and the molluscs are delineated using symbols from the legend in Fig. 3A.
concentrations are also lower than in southern Thailand where municipal areas, industrial zones, and dockyard areas had the highest sediment contamination by heavy metals, particularly Pb and As, while shrimp farming and traditional land uses such as salt flats, paddy fields, orchards, and mangrove forests showed low levels of metals (Sowana et al., 2011). Overall, at these other tropical Asian embayments, mangrove elemental concentrations are much higher than KKB sediments particularly for Pb and Cu (e.g., Ong Che, 1999); however, the sediments of industrially-polluted bays most closely resemble shrimp drainage pond sediments suggesting these anthropogenic settling ponds are having some effect at retaining aquaculture metal(loid) waste.

4.2. Mangrove mollusc diet interpreted from carbon and nitrogen stable isotopes

Mangrove molluscs in KKB capture a broad range in δ¹³C and δ¹⁵N values (Fig. 3), representing varying diets and niche habitats within coastal ecosystems (Demopoulos et al., 2008). Among the primary consumers (Littoraria sp., N. lineata, C. obtusa, E. aurisjudae), a gradient in δ¹³C and δ¹⁵N values reflects different diets and feeding locations in the mangrove, including on the forest floor grazing algae/leaf litter in sediment (E. aurisjudae, C. obtusa, sometimes N. lineata) versus on tree trunks grazing epiphytic algae on bark and leaves (Littoraria sp.). Omnivory in I. ephippium, including the consumption of marine plankton (Chen and Folt, 2000), results in a higher trophic position than primary consumer gastropods (Fig. 3). Given a similar I. ephippium δ¹³C signature to marine KKB particulate organic matter (POM) and canal POM, tree oysters are likely filtering food resources from this OM pool (Fig. 3B). Thais gradata had the highest δ¹⁵N values, representative of their predatory diet on barnacles, oysters, and mussels (Blackmore and Morton, 2002). Molluscs with a greater proportion of their diet originating from a marine ecosystem will have more enriched tissue δ¹³C signatures relative to molluscs consuming mangrove primary producers, as marine primary producers have enriched δ¹³C values relative to terrestrial organic matter (Bouillon et al., 2008). Our two mollusc species with the highest trophic positions (T. gradata and I. ephippium) happen to also have the greatest proportion of their diet from marine KKB; thus, this yielded a significant correlation between δ¹³C and δ¹⁵N values across mollusc samples (Fig. 3A).

Understanding the diet and habitat location of molluscs is important...
for determining their potential exposure to aquaculture effluent elemental contamination. The substantially enriched (+4–5‰) snail δ¹³C signatures relative to the mangrove tree leaf δ¹³C values indicates that the molluscs with lower trophic positions (e.g., *Littoraria* sp., *N. lineata*) are not solely consuming mangrove vegetation or leaf detritus (Fig. 3B). *Littoraria* sp. are generalist herbivores, that easily shift diet depending on food availability (Christensen et al., 2001; Alfaro, 2008), feeding on mangrove tree bark (Lee et al., 2001), tree leaves (Thanh-Nho et al., 2019), and marine fungi from the surface of *Rhizophora* prop roots (Kohlmeier and Bebout, 1986). These niche habitat differences across the gastropods indicate that their exposure to shrimp farm effluent and metal(loid)s that settle in mangrove sediments is different (i.e., the bioavailability of metals will differ for each mollusc species). For instance, the confinement of *Littoraria* sp. to mangrove trees and prop roots will reduce its exposure to shrimp farm effluent flushed into the mangrove at high tide compared to the snails grazing on the forest floor at low tide. Hence, *Littoraria* tissue metal bioaccumulation is more prone to trace element uptake and accumulation that occurs in *Rhizophora* leaves (Thanh-Nho et al., 2019). There is a higher propensity for *E. aurisjudae* and *C. obtusa*, which graze at that mud surface, to be exposed to elemental contamination released in shrimp farm effluent. Furthermore, the sedentary position of *E. ephippium* near the forest floor as well as their passive feeding strategy would also increase their exposure to metal(loid)s released in aquaculture effluent. Although *E. aurisjudae* are grazing on the forest floor, likely consuming mangrove leaf litter, we note that *Ellolium* tissue demonstrated a δ¹³C enrichment of 5‰ from mangrove leaf δ¹³C values, and a mean δ¹⁵N increase of 2.5‰ from leaves. These high discrimination factors appear to be common for mangrove organisms consuming mangrove leaf litter (Kristensen et al., 2008). In controlled feeding experiments with *E. aurisjudae*, the mean difference in δ¹³C and δ¹⁵N values from mangrove leaves to animals was 5.3 ± 0.3‰ and 4.2 ± 0.2‰, respectively (Teoh et al., 2018), demonstrating large trophic discrimination factors like those reported for mangrove crabs consuming mangrove leaf litter (+5‰ for δ¹³C; Kristensen et al., 2008). Hence, it is challenging to determine mollusc diet from stable isotopes and the use of commonly reported isotopic fractionation values for consumers, and observations on where molluscs occur in mangroves aid determination of exposure pathways to effluent.

4.3. Varying elemental concentrations between mollusc species

Mollusc elemental concentrations were lower than in invertebrates found in polluted global estuaries, such as in the Netherlands (Van den Broeck et al., 2010) and China (Pan and Wang, 2012), as well as streams receiving acid mine drainage (for Cu and Fe; Quinl et al., 2003). The KKB mollusc elemental concentrations are comparable to mollusc metal(loid) concentrations in less polluted Asian coastal systems (e.g., *T. gradata* from an estuary in Borneo; Proum et al., 2016), but also to molluscs collected in a mangrove downstream of Ho Chi Minh City, Vietnam (Thanh-Nho et al., 2019). Thanh-Nho et al. (2019) represents the most comparable study to our own with the same species sampled and same elemental concentrations measured. Here we see that our mollusc tissue [Mn] and [As] are within a similar concentration range for *C. obtusa*, *N. lineata*, and *Littoraria*, but we have species-specific differences in Cu with elevated [Cu] in nerites from KKB. Interestingly, [Cr] are higher in all mollusc species sampled in KKB compared to the mangrove adjacent to Ho Chi Minh City. As elevated Cr was measured in the shrimp drainage pond sediments (Fig. 2), this metal may be a specific indicator of aquaculture and sewage contamination versus industrial urban runoff. However, elevated metal (loid) concentrations were not spatially influenced by transect type, i.e., reference vs. impact, and thus it cannot be concluded that intensive aquaculture is elevating metal(loid) concentrations in mangrove molluscs. We see that many metal(loid)s decline in molluscs with increasing distance from the shrimp farms (Fig. S3). However, mollusc species occurrence varied along the intertidal zone (e.g., *T. gradata* was more common towards the seaward edge of the mangrove) such that molluscs of higher trophic position were generally sampled further from the shrimp farms. Due to biomagnification, metal(loid) concentrations were thus elevated in higher trophic level molluscs and we could not address whether metal(loid)s increase or decrease in molluscs moving away.
from the shrimp farms. To evaluate an impact of this research question only one mollusc species that is common along the mangrove intertidal zone should be sampled at greater frequency (i.e., more than every 50 m) and at higher abundances to achieve a large sample size capable of determining how bioaccumulation changes along the intertidal zone.

In KKB, sediment and mollusc element concentrations were not correlated, and thus given different metal concentrations (Zn, As, Cu, Mn, and Cd) between mollusc species, other driving factors (e.g., physiology, exposure pathway and diet) are contributing to the levels of metal bioaccumulation. However, the multivariate ordinations yield some similarities between mollusc tissue and sediment metal concentrations. In the KKB mangrove, _E. aurisjudae_ had high concentrations of Pb, Al, and Fe; metals that distinguish shrimp aquaculture sediments from mangrove and marine sediments, and thus could be considered better tracers of aquaculture effluent (Fig. 2, Fig. 5). Some gastropods can be especially good trace element accumulators due to their feeding habits of taking in sediment-bound and organic matter-adsorbed metals (Leppanen, 1995). Ellobiid gastropods have a specialized gizzard and stomach system that allows a high efficiency of assimilation of consumed plant matter in sediments (Morton, 1955). Thus, this would also allow these snails to process more metal(loid)s bound to organic matter in sediments including those elements that may be released in shrimp farm effluent and rapidly settle in the mangrove. It would be informative for future biomonitoring studies using Ellobiid gastropods to also examine organ-specific metal(loid) accumulation.

4.4. Trophic dynamics of elements in KKB mangrove molluscs

4.4.1. Zn, As, and Cu

The significant increase in [Zn] and [As] with increasing δ^15N values demonstrates the ability of elements to biomagnify in species with a higher trophic position in the food web. Tree oysters had high [As] and [Zn] (Fig. 4), and as filter feeders, high metal(loid) accumulation could be due to both their diet and exposure to shrimp pond effluent as they are sedentary and submerged at high tide. Oysters can be net metal (loid) accumulators, and are shown to have elevated [Zn]; with _I. ephippium_ in KKB demonstrating the highest [Zn] (Phillips and Yim, 1981; Rainbow, 1995; Blackmore, 2001; Marin-Guirao et al., 2008). In passive predators, like _I. ephippium_, and active predators, like _T. gradata_, transfer of trace metals is controlled by the quantity of metal accumulated in the prey, which is a result of the physiological detoxification process favored by the prey species (Blackmore, 2001). Thus, dietary exposure is a good predictor of elemental biomagnification, with _T. gradata_ [Zn] explained by their diet of barnacles which usually accumulate Zn with no significant excretion (Blackmore and Morton, 2002; Wang and Ke, 2002; Rainbow and Wang, 2005). Zooplankton, a component of _I. ephippium_ diet, take up metal(loid)s directly from water, with often the highest [As] in planktivorous species that feed directly on metal-enriched zooplankton (Chen and Folt, 2000). Overall, predatory molluscs contain the highest [As] relative to the detritus and algae eating snail species, demonstrating significant biomagnification in the KKB mangrove (Goessler et al., 1997; Khokhiattiwong et al., 2009; Shilla et al., 2019). In general, total [As] and [Zn] in KKB molluscs are not of toxicological concern. Furthermore, most As in seafood, like oysters, is found in organic forms, which are less toxic than the inorganic forms, and generally believed to be non-carcinogenic (Guo, 2002).

Copper is an essential element to living organisms, although it can be toxic when high concentrations are consumed. Cu biomagnification in snails and food webs is usually observed, with gastropods considered as “macro-concentrators” species for Cu (Marín-Guirao et al., 2008; Nica et al., 2012). Indeed, the PCA highlights that _N. lineata_ and _C. obtusa_ are distinguished by high [Cu] (Fig. 5). Some species of gastropods require higher body Cu as it is a constituent of the respiratory pigment hemocyanin (Dallinger et al., 2005). Bivalves do not have hemocyanin and so gastropods commonly have high [Cu] in comparisons across molluscs, indicating the physiological importance of this metal to _N. lineata_ and _C. obtusa_ (Blackmore, 2001). Here, we did not observe Cu biomagnification among the molluscs. This is likely due to high gastropod demands for Cu, and indeed we see the lowest [Cu] are measured in _I. ephippium_. Predatory mangrove gastropods have previously presented with high [Cu] relative to primary consumer gastropods (Blackmore and Morton, 2002), although here, _T. gradata_ did not have significantly higher [Cu] than other gastropod species in our study indicating that their main diet of barnacles is also likely not high in Cu.

4.4.2. Mn, Cr, Se, Pb, and Fe

Over a range of aquatic ecosystems Mn generally demonstrates no significant increase or decrease with trophic level; however, in a Tanzanian mangrove estuary, Mn was found to biodilute, although this trend was insignificant (Shilla et al., 2019). _Cerithidea obtusa_, also sediment grazers like _E. aurisjudae_, demonstrated the highest mean [Mn] (after _I. ephippium_ reference samples). Some evidence suggests that due to the organic sediment beneath _Rhizophora_ stands, reducible dissolution of Fe-Mn oxihydroxides by bacteria during organic matter decay is a source of dissolved trace elements in porewaters, these elements being more bioavailable (Thanh-Nho et al., 2019). This may indicate why a lower trophic organism like _C. obtusa_ could accumulate more Mn, contributing to a significant biodilution in Mn amongst mangrove molluscs.

Domestic and industrial products are rich in Cr, although the bioavailability of Cr is controlled by its speciation and redox behavior with Cr(VI) more toxic than Cr(III) which is relatively non-toxic to organisms and is an essential micronutrient for mammals (Pan and Wang, 2012). In KKB, [Cr] concentrations of molluscs were generally high compared to other mangroves impacted by anthropogenic activities; and we observe that some lower trophic organisms, particularly _C. obtusa_, again have higher tissue Cr. This may indicate that this metal is more bioavailable on the forest floor. Tree oysters had lower [Cr], likely due to their low assimilation efficiencies of this metal (Wang and Fisher, 1999). In contrast, Se concentrations were significantly different between mollusc species and notably, _I. ephippium_ had the highest [Se] (Fig. 4F, Fig. 5). Like for Zn, _I. ephippium_ are net accumulators of Se with many studies measuring high [Se] in bivalves (Pan and Wang, 2012).

Lead is also a cumulative metabolic poison (Pan and Wang, 2012). Low [Pb] in marine organisms often occurs due to lower bioavailability of dissolved and dietary Pb, and even in areas with mine drainage pollution, the bioaccumulation of Pb in mussels is slow (Riget et al., 1997). However, there can be good correspondence between sediment and animal Pb patterns indicating that sediment is a Pb source for mangrove organisms. Given that Pb is a persistent, immobile element with low solubility, mud grazers would have higher risks to Pb exposure. Similarly, _E. aurisjudae_ also has notably higher tissue [Fe] which can be traced to its high ingestion efficiency of organic matter in sediments (Morton, 1955).

5. Conclusion

We found low elemental concentrations in farmed shrimp and pellet food, but high elemental concentrations in drainage pond sediments (similar to other aquaculture, sewage, and industrially polluted sediments across Thailand and SE Asia), and thus we conclude the sheer volume of shrimp reared in high intensity aquaculture yields considerable elemental accumulation in pond sediments. However, to some extent the management ponds capture metal(loid) contamination from the effluent before it enters the marine environment and we find that both the mangrove sediments and mangrove mollusc metal(loid) concentrations do not indicate signs of contamination from aquaculture.

Carbon and nitrogen stable isotopes of the mangrove mollusc food web indicate large differences in diets across mollusc species, with
molluscs consuming marine diets having higher trophic positions. In the KKB mangrove, molluscs biomagnify As and Zn, whereas Mn appears to biodilate with increasing trophic position. Elevated [Cu] in N. lineata can largely be related to the physiological importance of Cu to some species of gastropods. Ellibrium aurisitu and C. obtusa, mud-dwelling gastropods, are distinguished from other molluscs by higher tissue metal concentrations of those elements also elevated in the shrimp drainage pond sediments (e.g., Pb, Fe, Al, Cr); and thus we identify these common gastropods as best probable bioindicators of aquaculture contamination in southeast Asian mangroves.

CRediT authorship contribution statement

Alison H. Hong: Conceptualization, Methodology, Investigation, Formal analysis, Writing - original draft. Kathryn E. Hargan: Conceptualization, Data curation, Formal analysis, Visualization, Writing - review & editing. Bunlung Naungsang: Conceptualization, Methodology, Methodology, Validation. Chatdanai Chaiharn: Conceptualization, Writing - original draft. Ailin Zhang for her assistance in conducting the preliminary metal assessments of trace metals in the aquaculture pond ecosystem of Pearl River Delta, China. Chemosphere 90, 2142–2148.

Acknowledgements

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

