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Abstract

Background

Melioidosis is an infectious disease that is transmitted mainly through contact with contami-

nated soil or water, and exhibits marked seasonality in most settings, including Southeast

Asia. In this study, we used mathematical modelling to examine the impacts of such demo-

graphic changes on melioidosis incidence, and to predict the disease burden in a developing

country such as Thailand.

Methodology/Principal findings

A melioidosis infection model was constructed which included demographic data, diabetes

mellitus (DM) prevalence, and melioidosis disease processes. The model was fitted to

reported melioidosis incidence in Thailand by age, sex, and geographical area, between

2008 and 2015, using a Bayesian Markov Chain Monte Carlo (MCMC) approach. The

model was then used to predict the disease burden and future trends of melioidosis inci-

dence in Thailand. Our model predicted two-fold higher incidence rates of melioidosis com-

pared with national surveillance data from 2015. The estimated incidence rates among

males were two-fold greater than those in females. Furthermore, the melioidosis incidence

rates in the Northeast region population, and among the transient population, were more

than double compared to the non-Northeast region population. The highest incidence rates

occurred in males aged 45–59 years old for all regions. The average incidence rate of

melioidosis between 2005 and 2035 was predicted to be 11.42 to 12.78 per 100,000 popula-

tion per year, with a slightly increasing trend. Overall, it was estimated that about half of all
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cases of melioidosis were symptomatic. In addition, the model suggested a greater suscep-

tibility to melioidosis in diabetic compared with non-diabetic individuals.

Conclusions/Significance

The increasing trend of melioidosis incidence rates was significantly higher among working-

age Northeast and transient populations, males aged�45 years old, and diabetic individu-

als. Targeted intervention strategies, such as health education and awareness raising initia-

tives, should be implemented on high-risk groups, such as those living in the Northeast

region, and the seasonally transient population.

Author summary

Melioidosis is an infectious disease caused by the Gram-negative bacillus Burkholderia
pseudomallei, which exhibits marked seasonality in most settings where it occurs, such

as Southeast Asia and Northern Australia. Most of the population at risk of contracting

melioidosis lives in rural areas; particularly at risk are those who are exposed to soil and

water, such as rice farmers. Thailand’s demography is in a transient phase, with older age

groups set to double within a decade. Social impacts of lifestyle changes are reflected in

seasonal movement and increasing urbanization. In this study, we used mathematical

modelling to examine the impacts of such demographical changes on an important infec-

tious disease and to dynamically predict the disease burden in a developing country set-

ting, namely Thailand. We found that melioidosis incidence was significantly higher

among working-age Northeast and transient populations, specifically among males aged

�45 years old and individuals with diabetes. Improved health education and awareness

raising should be implemented on a national scale, with a focus on high-risk groups living

in endemic areas, as well as those who move seasonally between these and other areas.

Introduction

Melioidosis is an infection caused by the Gram-negative bacillus Burkholderia pseudomallei,
which exhibits marked seasonality in most settings where it is endemic, including Southeast

Asia and Northern Australia [1]. Melioidosis is a communicable disease that is usually trans-

mitted via contaminated soil or water, and is highly prevalent in Northeast Thailand [2]. Most

of the population at risk of melioidosis lives in rural areas, especially those people who fre-

quently come into contact with soil or water, such as rice farmers [3, 4]. In Thailand, the high-

est number of melioidosis reported cases are often in January and October [5]. Infection with

B. pseudomallei shows great clinical diversity, spanning asymptomatic infections, localized

skin ulcers or abscesses, chronic pneumonia mimicking tuberculosis, and fulminant septic

shock with abscesses in multiple internal organs [6]. Both humans and animals are susceptible

to B. pseudomallei, and may be infected by percutaneous inoculation, inhalation, or ingestion.

Person-to-person spread and zoonotic infections of humans are very rare [7]. The incubation

period is between 1–21 days (average 9 days) [8], and is believed to be influenced by the inocu-

lation dose, mode of infection, host risk factors, and probably differential virulence of the

infecting organisms. Most cases result from recent infections, although latency with reactiva-

tion has been described up to 62 years following exposure [8], while the median times to
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relapse and reinfection are 21 weeks and 111 weeks, respectively. The risk of relapse is related

to a patient’s adherence to treatment and the initial extent of disease, but not to any underlying

conditions [9–11]. Melioidosis seems to be more severe in older people with lower immunity

or chronic underlying conditions, such as diabetes [12]. The risk of contracting melioidosis in

diabetic individuals is 12 times higher than for non-diabetic individuals [13, 14]. Currently,

the global burden of melioidosis is estimated to be 165,000 cases per year (95% credible inter-

val 68,000–412,000), with 89,000 deaths (36,000–227,000) [15].

Thailand’s Bureau of Epidemiology (BoE) launched a melioidosis surveillance system in

2001 (Report 506) [5]. Approximately 80% of reported melioidosis cases were from Northeast

Thailand [5]. In the past, the number of cases shown in the surveillance system was heavily

relied on provincial and regional hospitals voluntarily report, very few were reported from pri-

vate hospitals [16]. In general, melioidosis is diagnosed by testing for antibodies to B. pseudo-
mallei using an indirect hemagglutination (IHA) technique, which has been found to have low

sensitivity and specificity [17]. This surveillance system was revised in 2010 in order to capture

more health data items. There has been an increase in usage of bacterial culture [16] which

could give rise to an increase in total number of culture-confirmed cases. In addition, there

has been an improvement to access to healthcare. Nevertheless, the true number of cases is still

under-reported because of diverse clinical manifestations and inadequate bacterial identifica-

tion methods. A previous estimation suggested cases in Thailand were in excess of 7,000 cases

per year [15], while the BoE reported just 3,242 cases in 2015 [5].

B. pseudomallei is resistant to a wide range of antimicrobials, and ineffective treatment may

result in death in 70% of cases [18]. The treatment for melioidosis consists of an intensive

phase of at least 10–14 days of ceftazidime, meropenem, or imipenem, administered intrave-

nously, followed by oral eradication therapy, usually with trimethoprim–sulfamethoxazole

(TMP-SMX) for 3–6 months [19]. There is currently no vaccine against melioidosis [20, 21].

The demographics of Thailand are currently in a transition phase, becoming more like

those of developed countries, with rapid changes in population structure, reductions in birth

and mortality rates, and a low rate of population growth. Urbanization is accelerating, and

there are large annual population movements. These types of changes have been shown to

have important impacts on public health and the disease burden of both non-communicable

[22] and communicable diseases [23]. The population at highest risk of contracting melioidosis

is the working age group. There is appreciable seasonal movement among this group as they

go about their working lives. The internal migration of Thai people involves a number of dis-

tinct forms of movement within each year. Three forms have been identified in previous

research [24]: a single movement, seasonal movement, and repeated movement. Seasonal

migration involves people moving from the North and Northeast regions of Thailand towards

the Bangkok metropolis and the Central region during the dry season (from March through to

June), and in the reverse direction during the wet season (June to September) [24]. 40% of peo-

ple from the Northeast are classified as seasonal migrants (a transient population) [25]. It is

obvious that for person-to-person transmissible infections, there are significantly more infec-

tions when such transient individuals are considered [26–29]. However, very few studies were

trying to look at the effect of transient populations on an infectious disease from a primarily

environmental source which will help better describe the temporal and spatial changes of the

incidence of such a disease [30]. Developed countries are also observing an emergence of

melioidosis related to travelling and importation of cases [1].

To date, only a few approaches have been applied to determine the melioidosis burden,

including simple maps of melioidosis [1], maps of the global distribution of B. pseudomallei,
and estimates of the total incidence and mortality due to melioidosis worldwide using a statis-

tical model [15]. Only one study has used mathematical modelling, exploring the use of
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childhood seroprevalence data as a marker of intensity of exposure [31]. In this study, we used

mathematical modelling to predict the incidence of melioidosis in the Thai population, taking

account of population changes, seasonal movement, and incidence of diabetes. The model pro-

vides multi-dimensional forecasting of melioidosis, which could be useful for targeting inter-

vention strategies in this setting.

Methods

Demographic and seasonal movement sub-models

We generated a deterministic demographic sub-model to predict the size of the total popula-

tion (see S1 Figure A). We stratified the population by age and sex into 100 annual interval

classes, from 0 to 100 years old. The population in each class followed the actual population

structure of Thailand between 1980 and 2015, based on birth, death, and migration rate data

from the Population and Housing Census [32, 33], and using the 1980 census data as the initial

condition. All females in the age classes between 15 to 50 years old were considered to be capa-

ble of reproduction, with the fertility rate (fr) [34], while the death rate was age-related [35].

Members of the population were assumed to die upon reaching 100 years of age. Crude net

migration rates (immigrant minus emigrant per 1,000 population) for each year had an impact

on all age and sex compartments [36]. Most of the at-risk population for melioidosis lives in

rural areas, especially in Northeast Thailand, so we modelled internal migration by classifying

the population of Thailand into three independent groups. These were: those from the North-

east region who live at home for more than 6 months in a year (NE), the transient group or the

people from the Northeast region who move seasonally between home and other parts of the

country and spend less than 6 months in a year at home (T) and lastly the non-Northeast

group, who live somewhere other than the Northeast (Non_NE). We created the seasonal

movement sub-model to overlay with the demographic sub-model to estimate the rates of

movement among them (see S1 Figure B). We solved a large set of ordinary differential equa-

tions (ODE) for the deterministic demographic sub-model and the seasonal movement sub-

model, defined in S1 Information on Demographic sub-model and Seasonal movement sub-

model, respectively.

Melioidosis infection model

The demographic and seasonal movement sub-model was overlaid with the melioidosis infec-

tion model, defined in S1 Information on Melioidosis infection sub-model. In the melioidosis

infection model (a susceptible, exposed, infected, recovered, susceptible, or SEIRS, model), the

population was further divided into eight health compartments: susceptible (S), diabetic sus-

ceptible (SDM), exposed (E), symptomatic (Sym), asymptomatic (Asym), severe (Sev), treat-

ment (Treat), and recovered (R) (see Fig 1).

Melioidosis case data stratified by age, sex, and geographical area were obtained from the

Thai annual epidemiological surveillance reports from 2008 to 2015 [5]. Key assumptions for

our model were as follows. First, the transient population data used within this model referred

only to the movement of the Thai population. The movement of migrant workers from other

countries could be significant but was omitted in this study for simplicity [24]. Second, diabe-

tes progression was assumed to be irreversible, i.e. people could not move from diabetic to

non-diabetic. Third, we did not consider pre-diabetes or impaired glucose tolerance. Fourth,

we assumed that incidence rates of diabetes were constant over time but varied by age. Fifth,

we did not focus on chronic symptoms (those of duration greater than two months), including

such presentations as chronic skin infections, chronic lung nodules, or pneumonia, which
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only accounted for around 10% of melioidosis patients [12]. Finally, we did not focus on any

behavioral factors such as excessive alcohol use.

We used R software version 3.3.3 to run and analyze the model outputs, and the deSolve

package to solve the differential equations [37]. The initial parameter values were calculated

from population data and disease burden. Model fitting was carried out using the Markov

Chain Monte Carlo (MCMC) method, implemented with the Bayesian Tools R package as

defined in S2 Information on the Bayesian framework [38]. The demographic and seasonal

movement sub-models were run from 1980 (see S2 Figure A) to calibrate the model by fitting

to the average migration data, including the population in the Northeast moving to non-

Northeast, and the reverse direction from 2005 to 2015 [25]. We estimated seasonal movement

parameters from the transient population model (see S1 Table A) and used them to run the

melioidosis infection model from 2005. The model was run and fitted to the annual incidence

of melioidosis by age, sex, and area by year, and seasonally by month, from 2008 to 2015 [5].

For model fitting, the DEzs method in the Bayesian Tools package allowed automatic paralleli-

zation on three cores to be used for sampling. This method allowed fewer chains to be used

for estimated a large number of parameters and thus optimized the computational time [39].

Number of iterations and burn in were decided upon the model convergence by analyzing the

Fig 1. Schematic representation of the melioidosis dynamic sub-model (SEIRS model), with the population further divided into eight health compartments

with 100 age categories: Susceptible, diabetic susceptible, exposed, symptomatic, asymptomatic, severe, treatment, and recovery.

https://doi.org/10.1371/journal.pntd.0007380.g001
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differences between multiple Markov chains. The convergence was assessed by several mea-

sures including the standard procedure of Gelmal-Rubin [40, 41] and the target acceptance

rates [42]. Thirty-three parameters were estimated and the median values and credibility inter-

vals were reported. These parameters were those representing the infection rates among both

sexes in the Northeast, transient, and non-Northeast populations, (b
NE
a , b

T
a , b

N
a ) respectively,

proportion of symptomatic cases (pE), recovery rate from asymptomatic (σ), recovery rate

from symptomatic (γ), Relative susceptibility to melioidosis among diabetic individuals when

compare with non-diabetic (q), mortality/death rate for melioidosis (μM), amplitude (Ainc),

phase angle (φinc) and proportion of reporting (Report) (see S1 Table A). Note that the propor-

tion (1- Report) was defined as “Under-reporting” i.e. those symptomatic melioidosis patients

that have been seen by a physician, but the physician did not report them to the public health

authority for some reasons e.g. improperly diagnosis or missing report. The model was further

used to predict the 20-year age-specific incidence of melioidosis among males and females in

Thailand, sampling all 33 parameters from the posterior chains. The model predictions were

reported as age, gender, and area-specific incidence rates over time.

Results

The demographic sub-model was able to reproduce the past population structure of Thailand

from 1980 to the present (see S2 Figure A). The parameters that characterized seasonal

movement were estimated by fitting the model to the population movement data (see S2

Figure B). The model showed that majority of movements were made by Northeast individu-

als who moved to non-Northeast areas, approximately 13,600 persons per 100,000 popula-

tion per month, or 34% of all movements within a month (see S1 Table A). Moreover, the

majority of movements were among those aged between 15 and 60 years old, about 19,000

persons per 100,000 population per month, or 51% of all movements within a month (see S2

Figure C).

The fitting performance is shown in Fig 2. Melioidosis cases occurred seasonally, with a

peak in the wet season that lasted from May to October. The infection parameters that mini-

mized the fit statistic, using the Bayesian method, are shown in Table 1. The highest infection

rate was estimated to be 6 cases per 100,000 population per month among males aged 45–59

years old in the Northeast. The lowest rate was 0.4 cases per 100,000 population per month

among females aged 15–44 years old in the non-Northeast region. Surprisingly, we found that

the infection rate among the transient male population aged 15–44 years was higher than the

non-Northeast population (0.8 compared with 0.08 per 100,000 persons per month). Overall

46% of melioidosis cases were symptomatic. Recovery rates for untreated symptomatic cases

and asymptomatic patients were estimated by the model, with the average period of infection

estimated at around 9 and 5 months, respectively. The susceptibility to melioidosis among

DM population is 10.84 [95% CI 8.42–12.23] times greater than the non-DM population. If

patients’ treatment failed and they developed severe melioidosis, they could die within two

weeks. We estimated 80% and 50% under-reporting of cases in 2008–2009 and 2010–2015,

respectively.

Projections of the numbers of melioidosis cases between 2015 and 2035 are given in Fig 3.

Total melioidosis incidence per year was projected to increase by 70%, from 6,569 (4,834–

8,701) in 2015 to 11,173 (8,207–14,773) in 2035. The largest increase of melioidosis was pro-

jected to occur among the population aged 45–59 years old. The predicted incidence among

males was two-fold greater than that of females. The majority of melioidosis cases were seen

to occur in the population from the Northeast region of Thailand. The predicted incidence

among non-diabetic was two-fold greater than that of diabetic population.
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In Fig 4, total melioidosis incidence rates were projected to increase by approximately 10%

by 2035, from 11.42 (8.5–13.4) in 2015 to 12.78 (9.6–14.9) per 100,000 population in 2035 (see

Table 2). The highest incidence rates were predicted to be among those aged between 45–59

years old, followed by those age 60 years old and above. The incidence was almost double

among males compared with females in both Northeast and other regions. The incidence rate

among the Northeast population was more than double compared with the transient popula-

tion, and almost ten times higher when compared with the other regions. This study also

highlighted the importance of melioidosis among the transient population who temporally live

in the risk area but had almost six times higher incidence compared with other regional popu-

lations. From diabetes prospective, the incidence of melioidosis among diabetes was predicted

to be as high as 60 per 100,000 population. To summary, the risk of melioidosis among the

aging population with some chronic diseases such as diabetes is presenting an increasing

trend. The risk of infection among transient population, who temporary get some disease

exposure during the agricultural seasons, cannot be ignored.

Discussion

Few models have been used to predict the incidence of melioidosis on either a national or

global scale [14, 15, 43]. We applied population dynamics, seasonal movement, and the impact

of diabetes to study melioidosis epidemiology in Thailand. Other approaches such as decision

tree or Markov model can also be used to study melioidosis epidemiology given that the rate of

transmission is constant and the system is linear. Our model fits a dynamic model for a non-

transmissible disease to data on notifications only, which should allow reasonable predictions

to be made as to the future course of the epidemic. However, drawing strong inferences

regarding parameter values that pertain to transitions through infection/disease states after

the point of infection is less safe, such that particular caution should be exercised in regards to

Fig 2. Comparing the observed and model estimates of monthly melioidosis cases between 2005 and 2015.

https://doi.org/10.1371/journal.pntd.0007380.g002
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parameters, especially those discussed here. Our findings have some similarities and differ-

ences compared with previously published work. Limmathurotsakul and colleagues used a

negative binomial model to derive estimates of 7,572 (3,396–17,685) cases for global melioido-

sis incidence in the year 2015 [15]. This figure was similar to the incidence of melioidosis esti-

mated in our study, which was 7,569 cases (4,834–8,701) for 2015. Both studies reached similar

estimates of approximately 50% for case reporting and 40–45% for mortality/death rate for

melioidosis (see S2 Table A), while the risk factors identified for melioidosis were also in agree-

ment, i.e. being male, aged more than 44 years old, and having diabetes [13]. Two previous

studies by both Thai and Australian researchers consistently showed that type 2 diabetes

increased the risk of melioidosis by more than 10 times when compared with those non-diabe-

tes [13, 44], this figure is similar to our model estimates. Buckee and colleagues pointed out

that seasonal disease incidence could be driven by the mobility and aggregation of human pop-

ulations, which spark outbreaks and sustain transmission [30]. Northeast and transient males

aged more than 45 years old were also predicted by our model to be a highest risk groups for

melioidosis. Apart from reporting and mortality/death rates for melioidosis, the model also

gave the estimates for some natural history of disease parameters which would be hard to

Table 1. Results of estimated parameters of the melioidosis model.

Parameter Symbol Value (95% Credible Interval)

Infection rate (10−5) among males in the Northeast (per capita per

month)
b
NE
ma

Aged 0–14 = 0.7 (0.6–0.8)

Aged 15–44 = 0.7 (0.5–0.8)

Aged 45–59 = 6.1 (4.2–7.3)

Aged > = 60 = 1.7 (1.3–1.8)

Infection rate (10−5) among females in the Northeast (per capita per

month)
b
NE
fa

Aged 0–14 = 0.5 (0.4–0.6)

Aged 15–44 = 0.3 (0.2–0.4)

Aged 45–59 = 2.8 (1.1–2.9)

Aged > = 60 = 0.8 (0.6–0.9)

Infection rate (10−5) among males in the transient population (per

capita per month)
b
T
ma

Aged 0–14 = 0.3 (0.1–0.5)

Aged 15–44 = 0.8 (0.5–1.2)

Aged 45–59 = 0.8 (0.2–1.2)

Aged > = 60 = 1.1 (0.2–1.3)

Infection rate (10−5) among females in the transient population

(per capita per month)
b
T
fa

Aged 0–14 = 1.6 (0.1–1.8)

Aged 15–44 = 0.3 (0.1–1.1)

Aged 45–59 = 0.3 (0.1–0.6)

Aged > = 60 = 0.7 (0.2–1.2)

Infection rate (10−5) among males in the non-Northeast (per capita

per month)
b
N
ma

Aged 0–14 = 0.06 (0.05–0.08)

Aged 15–44 = 0.08 (0.04–0.09)

Aged 45–59 = 0.47 (0.4–0.65)

Aged > = 60 = 0.13 (0.12–0.2)

Infection rate (10−5) among females in the non-Northeast (per

capita per month)
b
N
fa

Aged 0–14 = 0.09 (0.03–0.17)

Aged 15–44 = 0.04 (0.02–0.05)

Aged 45–59 = 0.19 (0.15–0.3)

Aged > = 60 = 0.08 (0.04–0.09)

Proportion of symptomatic cases from exposer pE 0.46 (0.38–0.53)

Recovery rate from asymptomatic (per capita per month) σ 0.21 (0.005–0.24)

Recovery rate from untreated symptomatic (per capita per month) γ 0.11 (0.01–0.15)

Relative susceptibility to melioidosis among diabetic individuals q 10.84 (8.42–12.23)

mortality/death rate for melioidosis (per capita per month) μM 0.6 (0.4–0.75)

Proportion of reporting Report Report (in 2005–2009) = 0.17

(0.15–0.22)

Report (in 2010–2015) = 0.43

(0.39–0.54)

Amplitude Ainc 1.7 (1.3–1.8)

Phase angle φinc 20.6 (20.3–21.0)

https://doi.org/10.1371/journal.pntd.0007380.t001
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measure i.e. proportion and duration of asymptomatic infections, duration of untreated symp-

tomatic infections, and host susceptibility to melioidosis [45]. With regard to asymptomatic

infections, a few studies have tried to characterize and estimate the number of these hidden

infections [44–46]. Our model suggested that there could be a significant proportion of asymp-

tomatic infections (54%). Although the parameter values used in the fitting and prediction

process are based on annual incidence data only, the variation in the parameter values is

included to reflect the uncertainty in the predictions, and the posterior distributions represent

sets of collinear parameters that reproduce the observed data. Further studies and more appro-

priate data are required to refine these parameters.

Our model can provide many benefits for health policy planning. First, the model, in

common with previous studies, estimated that only about half of all melioidosis cases were

being reported. Under-reporting results in melioidosis being neglected, even more than

other neglected diseases such as dengue and leptospirosis [16]. Previous study suggested that

melioidosis was the third most frequent cause of death from infectious diseases in northeast

Thailand, after HIV/AIDS and tuberculosis [13]. By regarding melioidosis as being less

Fig 3. Projections of the numbers of melioidosis cases (95% credible intervals) between 2015 and 2035 in Thailand: (A) By age class (B) By gender (C) By

geographical area, and (D) By diabetes status.

https://doi.org/10.1371/journal.pntd.0007380.g003
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important disease has made it being further under-recognized by healthcare professionals,

low health budgets to invest in intensive prevention and control, poor disease knowledge

and practices among the population at risk, and finally a lack of research that would enable

the development of concrete strategies to improve standards of care. Second, the model can

be used to guide the design of targeted interventions i.e. predicting and identifying popula-

tions at high risk for morbidity and mortality. In line with the model’s predictions, targeted

intervention strategies could be concentrated among the male population of working age

who live in the Northeast, as well as the transient population. These strategies could include

providing health education to increase protective practices while engaging in agricultural

activities, washing after work, and seeking appropriate health advice when feeling sick. To

prevent deaths due to infections in older age groups, i.e. 45 years or older (65%) (see S2

Table A), national strategies could focus on early diagnosis and appropriate treatment, as

well as improving diabetes screening programmes, since elderly people with diabetes may be

prone to severe melioidosis.

Fig 4. Projections of incidence rate of melioidosis per 100,000 population (95% credible intervals) between 2015 and 2035 in Thailand: (A) By age class (B) By

gender (C) By geographical area, and (D) By diabetes status.

https://doi.org/10.1371/journal.pntd.0007380.g004
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Our model has some limitations. For simplicity we assumed that diabetes influenced the

likelihood of melioidosis infection alone and therefore once the person is infected with

melioidosis, the diagnosis and disease progression are independent of diabetes status.

Although diabetes has been shown to play roles in increasing severity and/or that medica-

tion of diabetes may also affect susceptibility and presentation of melioidosis [47, 48]. We

also assumed that mortality/death rates for melioidosis, incidence rates of diabetes, and sea-

sonal movement rates were constant over time, although they varied by age. It has been

suggested that mortality/death rate for melioidosis due to diabetes have decreased over time

because of improved access to hospitals [49], and lifestyle changes might also have affected

incidence rates [50]. In this model we classified the population into those living in the

Northeast and non-Northeast, which meant that the model was unable to predict the inci-

dence of melioidosis in locations more specifically than non-Northeast. It is important to

keep in mind that melioidosis is probably prevalent in all regions of Thailand, the lack of

knowledge, disease awareness and diagnosis tools led to heavily report of cases by the North-

east region only [16]. We assumed that the estimates of reporting among both males and

females were the same. The annual epidemiological surveillance reports of melioidosis data

used in the model included cases from all provinces around Thailand, except for those cases

seen in private hospitals, which account for about 30% of hospital provision, although there

is no information on the relative likelihood of melioidosis being diagnosed in different sec-

tors. Melioidosis diagnoses reported annually by the BoE are made using an indirect hemag-

glutination (IHA) technique to test for antibodies to B. pseudomallei, which has been found

to have low sensitivity and specificity. It could therefore potentially under-predict the num-

ber of cases.

Table 2. Projection of melioidosis incidence rates per 100,000 people in males and females by age group for selected years in each area.

Year Age group (years) Total

0–14 15–44 45–59 �60

Male Female Male Female Male Female Male Female

Total

2005 7.73 4.27 5.82 2.82 63.97 29.82 43.61 24.82 11.42

2010 7.74 4.27 5.82 2.82 63.79 29.78 43.59 24.77 11.39

2015 7.67 4.25 5.83 2.83 63.66 29.75 43.48 24.65 11.46

2035 7.64 4.25 5.86 2.85 63.58 29.74 42.94 24.59 12.78

Northeast

2005 22.43 11.86 16.77 8.18 185.24 86.27 124.61 70.34 33.24

2010 22.44 11.84 16.75 8.18 184.75 86.14 124.55 70.22 33.20

2015 22.24 11.81 16.76 8.19 184.36 86.06 124.22 69.87 33.40

2035 22.16 11.79 16.87 8.25 184.15 86.02 122.70 69.70 37.22

Transient

2005 11.57 32.95 17.49 7.10 73.46 30.33 65.85 52.83 16.24

2010 11.99 34.21 18.32 7.43 75.71 31.01 67.19 54.25 16.01

2015 11.89 34.11 18.34 7.44 75.37 30.97 67.01 53.89 15.83

2035 11.88 34.10 18.48 7.49 74.08 30.98 66.95 53.74 16.93

Non-Northeast

2005 0.62 0.46 0.54 0.27 4.79 2.26 3.33 2.15 0.93

2010 0.62 0.46 0.55 0.26 4.78 2.26 3.33 2.15 0.94

2015 0.61 0.45 0.55 0.26 4.77 2.26 3.32 2.14 0.94

2035 0.61 0.45 0.56 0.26 4.76 2.25 3.28 2.13 1.04

https://doi.org/10.1371/journal.pntd.0007380.t002
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Conclusion

Population dynamics, seasonal movement, melioidosis infection rates, and under-reporting

are important components of melioidosis incidence patterns. The increases seen in melioidosis

cases are partly attributable to demographic changes as working, transient, and aging popula-

tion groups are more prone to develop melioidosis. The key findings from our study are firstly,

the increasing trend of melioidosis incidence, especially among males aged 45–59 years old, is

predicted to continue; and secondly, the male, Northeast, and transient populations aged 45–

59 years old were at the highest risk of melioidosis infection.

We anticipate that the modelling methods described here could be used in similar settings,

especially those with reliable census data, to estimate the future melioidosis burden, as well as

the potential effects of under-reporting. In addition, this modelling approach could be adapted

to study other infectious diseases, behavioral changes, and seasonal movements, where demo-

graphic factors are important drivers of a population’s disease burden.
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