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Abstract

Respiratory Syncytial Virus (RSV) is the most common cause of respiratory tract infection in

infants and children and shows increasing trend among elderly people worldwide. In many

developing country settings, population and household structures have gone through some

significant changes in the past decades, namely fewer births, more elderly population, and

smaller household size but more RSV high-risk individuals. These dynamics have been cap-

tured in a mathematical model with RSV transmission dynamics to predict the disease bur-

den on the detailed population for future targeted interventions. The population and disease

dynamics model was constructed and tested against the hospitalization data for Acute

Lower Respiratory Tract Infection due to RSV in rural Thai settings between 2005 and 2011.

The proportion of extended families is predicted to increase by about 10% from 2005 to

2020, especially for those with elderly population, while the classic nuclear family type (with

adults and children) will decline by about 10%. For RSV, infections from extended family

type (approximately 60% of all household types) have majorly contributed to the force of

infection (FOI). While the model predicted the increase of FOI from the extended family by

15% from 2005 to 2020, the FOI contributed by other household types would be either stable

or decrease in the same time period. RSV incidence rate is predominantly high among

babies (92.2%) and has been predicted to decrease slightly over time (from 940 to 864

cases per 100,000 population by 2020), while the incidence rates among children and

elderly people may remain steadily low over the same period. However, the estimated inci-

dence rates among elderly people were twice than those in children. The model predicts

that approximately 60% of FOI for RSV will come from members of the extended family

type. The incidence rate of RSV among children and elderly in extended families was about

20 times lower than that in infants and the trend is steady. Targeted intervention strategies,

such as health education in some specific groups and targeted vaccination, may be consid-

ered, with the focus on extended family type. Target interventions on babies can lessen the
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transmission to children and elderly especially when transmission within households of

extended family type is high.

Introduction

Respiratory Syncytial Virus (RSV) is a communicable disease pathogen, and the most common

cause of respiratory tract infection in infants and children [1,2]. It is the most important viral

pathogen causing lower respiratory tract infections (LRTIs), leading to pneumonia and bron-

chiolitis [3]. RSV is transmitted by contact from people who have an active RSV infection.

Close contacts within households may present potential opportunities for RSV transmission

[4]. The routes of transmission are large-particle aerosols over short distances such as sneezes,

hand-to-eye, and by hand contact with infectious secretions, which are passed from the infec-

tious persons to susceptible ones [5–7]. The symptoms include a cough and mild-to-moderate

nasal congestion with clear rhinorrhea. At the early stage, a mild fever can occur and symp-

toms may persist for one to three weeks before complete recovery [8]. The median latency

period is 4 days (95% CI 2–8) [5,9], while the infectious period is 4.4 days (95% CI 1–9) [10].

Shedding of the virus and severity of infection may vary with age; for example, adults shed the

virus for 3–7 days [11], infants usually shed up to 14 days [12]. They may also vary with immu-

nocompromised status such as for patients with rheumatic diseases, solid tumors [13], and

allogeneic transplantation [14]. Moreover, shedding is extended for a significantly longer time

in infants with LRTI than in those with clinical manifestations limited to the upper respiratory

tract. The immunocompromised people can spread the infection for several months [15].

Duration of waning of short-term immunity of recovered individuals is about 2 years [16–18].

Severe LRTI was estimated at approximately 3 million cases worldwide in 2005 and up to

200,000 deaths among children aged less than 5 years were attributable to RSV [2]. Ministry of

Public Health, Thailand, in collaboration with the International Emerging Infections Program

of the Global Disease Detection, Thailand Regional Center, launched an active population-

based surveillance in two provinces, Sa Kaeo and Nakhon Phanom, in 2003, with the aim to

detect RSV-associated acute lower respiratory tract infection (ALRI) through reverse tran-

scriptase polymerase chain reaction (RT- PCR) assays and to describe the burden and charac-

teristics of pathogens that cause pneumonia [19]. The study showed that the incidence of RSV-

associated ALRI hospitalization was 46/100,000 persons/year. Overall RSV hospitalization

rates were the highest among children aged 1 year (1,067/100,000 persons/year) and 1–4 years

(403/100,000 persons/year), but low among enrolled adults aged more than 65 years (42/

100,000 persons/year). After 2008, the method of detection has changed to real-time reverse

transcription polymerase chain reaction (rRT-PCR) [20]. As the result of higher sensitivity,

the overall incidence of RSV-associated ALRI hospitalization was 85/100,000 persons/year.

The highest rate occurred among children < 1 year old (1,543/100,000 persons/year). The

rates were low among older children and young adults but high among persons aged > 65

years (130/100,000 persons/year). Annual RSV hospitalizations peaked during July-October

with almost no documented RSV hospitalizations during January-June.

Thailand is going through a changing phase in the population structure, birth and mortality

rates, population growth, household types, household sizes, and migration rates. These

changes affect public health decisions and implications for non-communicable [21] and com-

municable diseases [22]. Many RSV transmission dynamic models have assumed static house-

hold distributions. However, household structure has long been known to play an important
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role in the transmission of infection [22–24]. Disease control measures are often directed at

household members, for example, household-based interventions to slow the spread of pan-

demic influenza [25]. Three household types were targeted in our study, namely:

1. “Nuclear family type 1” (husband and wife or single (aged 15–59 years old) without baby

(aged� 1) or children (aged 2–14))

2. “Nuclear family type 2” (husband and wife (aged 15–59) with baby (aged� 1) or children

(aged 2–14))

3. “Extended family type” (three-generation family) (husband and wife (aged 15–59) with

baby (aged� 1), children (2–14), and grandparents (aged� 60))

In the past 25 years, the extended family type has increased from 25.2% to 33.6% by 2015

and become a dominant family type in Thai society, especially in the rural areas, while the clas-

sic nuclear family type 2, a dominant family type in the past, has declined from 52.4% to 26.6%

by 2015. Nuclear family type 1 has increased three-folds from 11.7% to 30.1% by 2015 with a

slightly greater number and proportion in rural areas compared to the urban [26]. This has

reflected in the culture of the country, especially in rural settings, where grandparents often

help in looking after their grandchildren while the parents are working away from home.

Many mathematical models have been applied to study RSV transmission dynamics [27–

30] but household dynamic was incorporated only recently in the modeling, and only a few of

them have looked at disease transmission in general within and between households [22,24].

The studies summarized that household models that include births, deaths, and movement

between households could show dramatically different patterns of infection and immunity

from static population models. They also suggested that models that did not account for future

demographic change and especially its effect on household structure, might potentially overes-

timate the impact of vaccination. Some previous studies have directly examined the transmis-

sion of RSV within households [31,32]. They showed that school-going siblings frequently

introduced RSV into households, leading to infection in infants. A recent individual-based

model was developed to look at the transmission dynamic of RSV within households in an

African setting [33]. The study summarized that it was important to consider the social struc-

turing and size of the household when modeling RSV transmission. The main objective of this

study is to study the household dynamics and changing trends of RSV incidence using wild

nationwide demographic data of household structuring and size. The model is set up to

explore the potential impacts on RSV disease burden in societies that move towards an aging

era with a large proportion of the population living in extended families, the common house-

hold type for many low/middle income countries. This modeling exercise will be useful for

designing target interventions focusing on specific age groups and/or household levels.

Methods

Household sub-model

We generated a household deterministic sub-model to calibrate the population in the three

household types (see Fig A in S1 File). We classified the households into three major types:

nuclear family type 1, nuclear family type 2, and extended family type. We used actual popula-

tion data of Thailand between 1995 and 2011 from the Population and Housing Census

[34,35] and features of Thai families [26] by using the birth and death rates and the population

of each household as the initial condition since 1995. All population was transitional with the

household transition rate (hr) [36], while the death rate was age related [37]. We solved a large
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set of Ordinary Differential Equations (ODE) of household deterministic sub-model defined

in S1 File.

RSV transmission dynamic model

The household sub-model was then overlaid with the RSV transmission dynamic model,

defined in S1 File. The RSV transmission dynamic model (Boosting and waning of immunity

model [27]) has its origins in a simple non-age-structured model of RSV dynamics [38]. Then,

population in each household type were further divided into six epidemiological compart-

ments, primary susceptible (S0), infected but asymptomatic (A), infected and symptomatic cat-

egorized as upper respiratory tract infections (URTI), lower respiratory tract infections

(LRTI), severe lower respiratory tract infections (SLRTI) and finally, secondary susceptible

(S1), those still susceptible to infection but with partial immunity (see Fig 1). Hospitalization

(H) was considered a subset of SLRTI (see Fig B in S1 File).

RSV-associated ALRI cases by age were obtained from an active population-based surveil-

lance by the Ministry of Public Health, Thailand, in collaboration with the International

Emerging Infections Program of the Global Disease Detection, Thailand Regional Center, in

two provinces, Sa Kaeo and Nakhon Phanom, since 2003 [19,20]. Geographically, these two

provinces represent typical rural provinces on the border; Sa Kaeo is next to Cambodia, while

Nakhon Phanom is next to Laos. There was no statistically significant difference in RSV circu-

lation between the two provinces during the study period [19]. Diary contact between age

groups are accounted for using a matrix of contact patterns (the “mixing matrix”) empirically

derived from a diary-based survey in 2009 [39]. Key assumptions for our model are as follows.

First, households were assumed to be of three types (i.e., nuclear family type 1, nuclear family

type 2, and extended family type) because these are the ones generally found in Thailand [26].

Second, the household transition rate, defined as the rate at which the household population of

each age group changes, was assumed to be consistent over interval times but varying by age

group. Third, we assumed that elderly population do not live alone, because elderly people

who live alone accounted for only 7% of all elderly population [26]. Fourth, we used fixed

diary contact in 2009. Fifth, the immunity status for each person was assumed to be the same

and with an absence of any fully resistant person to infection. In this class, people are less likely

to be infected and if they are infected, they are less likely to get severe infection. Sixth, maternal

immunity was assumed to be absent, according to previous estimations that show the short

duration of maternal immunity [27]. Seventh, immunity can wane and secondary susceptible

individuals in S1 could return to being completely naive susceptible (S0). For simplicity, ter-

tiary and subsequent infections were all classified as being secondary infections. Finally, RSV-

related deaths were assumed sufficiently few not to affect population and infection dynamics,

i.e., negligible for the modeling purpose, and hence they are not explicitly represented in the

model equations.

We used R software version 3.3.3 to run and analyze the model outputs and the deSolve

package to solve differential equations [40]. The initial parameter values were calculated from

a previous study [27]. Model fitting was conducted using the Markov Chain Monte Carlo

(MCMC), implemented in the Bayesian Tools R package defined in The Bayesian framework

(see S2 File) [41]. For caliberation, the household deterministic sub-model was run from 1995

by fitting the number of population in each household type to the actual population structure

of Thailand between 2005 and 2011, according to the Population and Housing Census [34,35]

and features of Thai families [26]. We estimated the household transition rates over intervals

and used them to run the RSV transmission dynamic model from 1995. The household sub-

model together with the RSV transmission dynamic model was run from 1995 to calibrate
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RSV incidence cases in each household. The RSV transmission dynamic model was then run

and fitted to RSV-associated ALRI cases by age group and months from 2005 to 2011 for Sa

Kaeo and Nakhon Phanom provinces [19,20]. For model fitting, the DEzs method in the

Bayesian Tools package allowed automatic parallelization on three cores to be used for sam-

pling. This method allowed fewer chains to be used for estimating a large number of parame-

ters and thus optimized the computational time [42]. Number of iterations and burn-in were

decided upon the model convergence by analyzing the differences between multiple Markov

chains. The convergence was assessed by several measures including the standard Gelmal-

Rubin procedure [43,44] and the target acceptance rates [45]. Six parameters were estimated

including those representing the seasonal parameters (amplitude (A), phase angle (φ), and

Infectivity parameter); within nuclear family type 1 (qi1), within nuclear family type 2 (qi2),

and within extended family (qi3) and infectivity in community (qo) (see Table A in S1 File).

The median values and credibility intervals were reported. The model was used to assess the

impact of household changes in RSV in rural Thailand, sampling all six parameters from the

posterior chains and was further used to predict the 10-year RSV incidence in each household

type in Thai rural settings.

Fig 1. Schematic representation of the RSV transmission dynamic model. Household population were divided into three

household types and four age classes: nuclear family type 1 (left), nuclear family type 2 (middle), and extended family type (right).

These categories of household population were further divided into six epidemiological compartments as follows: primary

susceptible (S0), infected but asymptomatic (A), infected and symptomatic categorized as upper respiratory tract infections (URTI),

lower respiratory tract infections (LRTI), severe lower respiratory tract infections (SLRTI) (the dashed line represents a proportion

of SLRTI who are hospitalized), and secondary susceptible (S1) i.e., those still susceptible to infection but with partial immunity.

https://doi.org/10.1371/journal.pone.0219323.g001
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Results

The household sub-model was able to calibrate the past population structure of each age group

of Thailand for each household type from 2005 to 2011 (see Fig A in S2 File). It was then able

to predict the age group population for each household type from 2005 to 2020 (see Fig B in S2

File), and the percentage of population for each household type from 2005 to 2020 (see Fig C

in S2 File). The population changes, including household transition rate and death rate mod-

eled here, have a marked effect on the household population structure. The proportion of

extended families in the population has been increasing by about 10% and has become a domi-

nant family type, especially elderly population. The classic nuclear family type with parents

and children has been declining by about 10%, while nuclear families comprising a husband

and wife or single without children have slightly increased over time (see Fig C in S2 File).

The model fitting result is shown in Fig 2. RSV incidence cases occurred seasonally with a

peak in the wet season, usually lasting from May to October. The transmission parameters that

minimized the fit statistic using the Bayesian method are shown in Table 1. The highest infec-

tivity was estimated among the extended family population, while the lowest was among peo-

ple in nuclear family type 1.

Projections of the incidence rates of RSV between 2005 and 2020 are given in Fig 3. The inci-

dence of RSV-associated ALRI hospitalization was predicted to increase from 31.1 (10.7–34.2)

cases in 2005 to 35.23 (22.37–38.21) cases in 2011 per 100,000 persons/year. It will decrease by

0.7% in 2020. Incidence rate in the extended family type was two-fold greater than nuclear family

type 2. The lowest incidence rate was in the nuclear family type 1. The incidence rate was less

than 0.1 per 100,000 and thus unnoticeable in Fig 3C. The majority of RSV incidence rate was

estimated to occur among “baby” in the extended family type. It has been decreasing over time

after 2013. It will be approximately 864 (845–1,130) cases per 100,000 persons in 2020. The trend

of incidence rates among population such as “baby” and “elderly people” was relatively similar.

We transformed RSV incidence rates into a log scale as showed in Fig 4. The majority of

RSV incidence was estimated to occur among the baby population, while RSV incidence

among the elderly population was greater than children and adult people. The trend of RSV

incidence is steady among populations.

Discussion

We applied population dynamics and seasonal and household changes to study RSV epidemi-

ology in Thailand. Prior to our study, some statistical analyses were performed to estimate the

incidence rate of hospitalizations for RSV-associated ALRI in rural Thai settings between 2004

and 2011 [19,20]. Some similarities and differences between our findings and previously pub-

lished work are discussed here. Fry and colleagues used a logistic regression model to derive

an estimated RSV crude incidence rate of 22 cases per 100,000 population between 2004 and

2007 [19]. Both overall and age-specific incidence rates in our study and their study were

lower than our estimations, i.e., overall 30.1 (95% credible intervals, 95% CI 10.7–34.2), baby

1,105.2 (980.3–1,212.1), children 31.5 (20.1–32.8), adult 2.1 (0–4.2), and elderly people 62.6

(42.3–75.2) per 100,000 population. Additionally, our study can predict the RSV incidence

among each household type, which has not been accomplished previously in Thailand. Naorat

and colleagues used a logistic regression model to derive an estimated total RSV incidence rate

of 23 cases per 100,000 from 2008 to 2011 [20]. This figure was lower than our findings, where

the overall rate was estimated to be 32.1 (28.2–39.3) cases per 100,000 people, 1,105.4 (980.2–

1,212.8)/100,000 for infants, 42.3 (32.1–53.3)/100,000 for children, 3.3 (0–4.2)/100,000 for

adults, and 75.3 (50.6–95.1)/100,000 for elderly people. This could partly be explained by the

impact of population and household dynamics, as well as a consequence of using different
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techniques for predictions. Our model tended to fit the observed data well during this period.

The model’s prediction of a significantly greater number of cases prior to 2008 could be

explained by the screening scheme changes, i.e., before 2008 the eligibility criterion for enroll-

ment was patients with clinician-ordered chest radiographs, so previous estimates did not cap-

ture RSV-associated hospitalizations among patients without chest radiographs. Additionally,

before 2008, reported RSV diagnoses were made using the RT-PCR technique; after that,

rRT-PCR was introduced.

The decreasing trend of RSV incidence rates (0.7%) in these settings was similar to a previ-

ous study in the U.S. [46] and some settings in Thailand [47]. Geard and colleagues developed

a transmission model and showed that a reduction in fertility rate is associated with a decrease

in incidence rate [22]. This finding is similar to our model prediction, although it is important

to note that the previous study’s model structure had a Susceptible-Infected-Recovery (SIR)

with lifelong immunity following infection; hence, the stronger influence of fertility rate. For a

Fig 2. Observed RSV-associated ALRI hospitalizations and the fitted RSV model with 95% CI each month between 2005 and

2011.

https://doi.org/10.1371/journal.pone.0219323.g002

Table 1. Results of estimated parameters of RSV model.

Parameter Symbol Value

(95% Credible Interval)

Transmission parameters

Infectivity within nuclear family type 1 qi1 0.069 (0.004–0.279)

Infectivity within nuclear family type 2 qi2 0.115 (0.110–0.118)

Infectivity within extended family qi3 0.135 (0.128–0.137)

Infectivity in community qo 0.128 (0.011–0.338)

Seasonal parameters

Amplitude A 0.358 (0.344–0.366)

Phase angle φ 158.5 (155.7–161.7)

https://doi.org/10.1371/journal.pone.0219323.t001
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non-immunizing infection such as RSV, where the susceptible pool is also replenished by wan-

ing immunity, fertility is likely to have a diminished effect on outbreak dynamics.

Pan-Ngum and colleagues assumed that the infectivity of viral shedding was similar among

populations and thus represented by a single estimate [27]. The benefit of using our household

Fig 3. Projection of RSV incidence rate per 100,000 people for each household between 2005 and 2020 in a Thai rural setting:

(A) baby, (B) children, (C) adult, and (D) elderly people. Gray color denotes nuclear family type 1, blue color: nuclear family type

2, and orange color: extended family.

https://doi.org/10.1371/journal.pone.0219323.g003

Fig 4. Projection of RSV incidence (logarithmic scale) for each household between 2005 and 2020 in Thai rural setting: Baby

(orange color), children (blue color), adult (gray color), and elderly people (yellow color).

https://doi.org/10.1371/journal.pone.0219323.g004
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model is that it enables us to estimate and compare the infectivity parameter among different

household types, which a simpler transmission dynamic model cannot [22,24,27,30]. In our

model, we estimated that the infectivity was high among extended family and community.

Kombe and colleagues used an individual-level transmission model to derive an estimated fig-

ure of the total household incidence rate, which is, in general, higher for larger households due

to their potential to have a larger number of infectious individuals at any given time point

[33], which is similar to our model estimates. No study has assessed the infectivity at the com-

munity level. The high estimate from our model may represent the intense transmission occur-

ring in a school or nursery, for example. Reduction in birth rate over 25 years could reduce the

RSV incidence among babies in both nuclear family type 2 (37%) and extended family type

(17%), as shown in Fig 3, which is similar to the previous studies [48]. Similarly, the incidence

rate among elderly people is also predicted to decrease over time. Yamin and colleagues devel-

oped a transmission model study that showed high association of incidence among infants and

the elderly, which means that substantial indirect protection targeted at infants and children

could reduce RSV in the elderly [49].

Our model can provide insights in terms of RSV in different household types, which can

guide health policy planning. Our findings are consistent with some previous studies that esti-

mated RSV incidences were mostly high among babies (92.3%). We also predicted a slight

decrease in the RSV incidence among babies while the incidence among children, adults, and

the elderly are stably low. However, the estimated incidence rates among elderly people were

two-fold greater than those in children. Little attention has been paid to RSV incidence among

the elderly in the past, though this will become more significant as the elderly population is ris-

ing. Development of concrete strategies to improve standards of care and a potential vaccina-

tion program, with a focus on the vulnerable population, will be required. While a vaccine is

being developed, some vaccine implementation scenarios could be simulated to identify poten-

tial issues around the implementation of such a program and how they intersect with the

insights gained using the model. The use of this, or a similar model, to explore some of these

control strategies is a clear avenue for future work. Second, the model can be used to guide the

design of targeted interventions, i.e., predicting and identifying population at high risk for

RSV morbidity. In line with the model’s predictions, targeted intervention strategies could be

concentrated on household members of the extended family type. Furthermore, the impact of

targeted interventions on infants may yield significant protective benefit to other members of

the same household such as elderly people.

Our model has some limitations. First, we used a simple version of the compartmental

model structure to study the population and household dynamics and influence on RSV trans-

mission. It might be useful to distinguish between households with children attending day-

care or schools compared to children at home. In principle, an individual-based model could

capture more fine-grained differences in transmission by household type, e.g., pair-wise con-

tact rates between household members from a survey of primary school students could be con-

sidered and potentially be used to parameterize such a model [50]. For simplicity, we assumed

that the infectivity, natural mortality rates and transition rates were constant over time,

although they varied by age. The transition rates could not be interpreted as evidence for mag-

nitude of these quantities. They served the model fitting purpose such that the household

dynamic model could reproduce the actual data. The household structure was assumed fixed

beyond 2011 because the survey is performed every 10 years and the next census will be in

2020. In this model, we classified the population of two provinces, namely Sa Kaeo and

Nakhon Phanom, representing a Thai rural setting. Scaling-up the model for predicting the

RSV disease burden for the whole country might not be appropriate. The population-based

surveillance system for clinical pneumonia reports of RSV data used in the model included
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cases from only eight hospitals in Sa Kaeo Province and twelve hospitals in Nakhon Phanom

Province. Additionally, RSV diagnoses were reported differently for two periods, with

RT-PCR technique before 2008 and rRT-PCR after 2008, which could, therefore, cause poten-

tial inconsistency of prediction.

Conclusions

Population dynamics, household changes, together with RSV transmission rates, are important

components of estimations and predictions of RSV incidence in each household type. The

trend of RSV incidence is partly attributable to household changes. The key findings from our

study are i) the model predicted the trend of RSV incidence as steady, but it slightly decreased

among babies; ii) the infectivity was estimated to be high among the population in extended

families; iii) the estimated incidence rates among elderly people were two-fold greater than

those in children; and iv) targeted interventions on babies can lessen the transmission to chil-

dren and the elderly especially when transmission within households of the extended family

type is high. Targeted interventions in other age groups may be more complicated, e.g., the

case for vaccination of adults or elderly population is cumbersome because boosting pre-exis-

tent immunity to RSV may be neutralized by immunosuppressive mechanisms depending on

the vaccine characteristics used [51].

We anticipate that the modeling methods described here could be used by other provinces

and countries, especially those with reliable census estimates, to estimate future RSV burden,

as well as the potential effects of household changes. Additionally, the modeling approach can

be adopted to study other infectious diseases and household dynamics considering that demo-

graphic factors are important drivers of population health and disease occurrence.
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