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PRODUCTION & MANUFACTURING | RESEARCH ARTICLE

Derivation of closed-form expression for optimal
base stock level considering partial backorder,
deterministic demand, and stochastic supply
disruption
Chirakiat Saithong 1* and Saowanit Lekhavat2

Abstract: In the presence of stochastic supply disruption, the optimal variables of
an inventory policy must be determined appropriately. Considering a two-echelon
system comprised of a supplier and a retailer, the objective of this research is to
help the retailer derives the optimal base stock level that achieves the minimum
costs per unit of time regarding the stochastic unavailability of the supplier. The
expression of the optimal base stock level is determined in closed-form in consid-
eration of a continuous random variable of a disruption length together with
a partial backorder of shortage inventory. A solution method which facilitates the
retailer to derive the correct expression for the optimal base stock level is proposed.
The applicability of the proposed solution method is illustrated through numerical
experiments.

Subjects: Stochastic Models & Processes; Industrial Engineering & Manufacturing;
Mathematics & Statistics for Engineers; EngineeringMathematics; Operations Research

Keywords: supply disruption; periodic review base stock policy; closed-form expression;
optimal base stock level; partial backorder

1. Introduction
Adopting an outsourcing strategy, a firm gains competitive advantage from focussing only on
a few business core competencies that substantially enhances the firm’s performance (Prahalad &
Hamel, 1990). This strategy allows the firm not only to increase the return on investment but also
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to concentrate more on the marketing and sale functions to leverage the firm’s buying power (De
Kok & Graves, 2003). Nevertheless, the letting of suppliers to supply goods instead of manufactur-
ing products in-house inevitably exposes the firm to uncertain supply problems. There are various
types of uncertain supply problems that a firm could face, such as quality of supply batch, limited
capacity of supply, yield, and supply disruption.

Supply disruption causes the firm to experience a shortage of input materials, stock out, loss of
goodwill, and increased costs, as a result of the temporary unavailability of supply sources. There
are various causes of the supply disruption problem, including labor strike at a supplier’s facility
(Parlar & Perry, 1996), fire at a sub-supplier’s facility (Norrman & Jansson, 2004), supplier’s
production problem (Greising & Johnsson, 2007). Considering some practical examples of the
effect of supply disruption, Ericsson encountered a shortage of electronic chips from a supplier
who ran into some trouble, and the loss was 400 USD million due to inability to respond to key
customer demand during a peak selling season (Norrman & Jansson, 2004). The delivery delay for
a newly launched product, the Boeing 787 Dreamliner, cut off cash flow by 2.5 USD billion due to
a screw supply shortage problem (Greising & Johnsson, 2007). Therefore, in the presence of
stochastic supply disruption, some strategies must be employed properly, and Tomlin (2006)
proposed a list of strategies as well as discussing the situations where the appropriate strategies
could be employed. Focussing on inventory holding strategy, its concept is to hold extra inventory
to increase responsiveness during a supply disruption period.

This research work considers a two-echelon system comprising a supplier, who randomly runs
into problems leading to unavailability to respond to orders temporarily, and a retailer, who has to
devise an inventory policy to manage the supply disruption problem. Neither order too much nor
too few is good for the retailer. The question regarding the optimal inventory policy, therefore,
arises. The retailer applies a periodic review base stock policy. Ordinarily, at a review point in time,
the retailer places an order, and the receipt is immediate. However, faced with the supplier’s
troubles, the retailer must wait until the supplier resolves the troubles before placing an order. The
time elapsed from the occurrence of a disruption to the end of the disruption refers to the
disruption length. There are two cases of disruption length found in the existing literature, i.e.,
a multiple of inventory review intervals, and continuous length. Considering the continuous length
of supply disruption gains advantage in that it not only helps derive a more precise optimal level of
base stock but also presents the reality (Saithong & Luong, 2019). Thus, we consider it in this study.
Unmet demand from on-hand inventory is partially back-ordered, and the rest is lost sale. The
component of total costs comprises time-dependent holding costs (monetary unit per unit and per
unit of time), backorder costs (monetary unit per unit and per unit of time), and lost sale costs
(monetary unit per unit). The objective of this study is to derive the optimal base stock level for the
retailer, which helps achieve the minimum costs per unit of time.

Taking into consideration the continuous variable of supply disruption length together with the
partial backorder of shortage inventory to derive the optimal variable in a closed-form expression
leads to practical situations that facilitate managers to derive the optimal level of base stock
precisely. Even though some of the existing literature deals with such a problem, a few studies
considered the continuous variable of supply disruption length. Since treating the disruption length
as an independent continuous random variable could be more realistic and could help derive an
accurate optimal level of base stock, we should include this feature in the model. Even if Hsieh and
Putera (2018) and Saithong and Luong (2019) considered the continuous variable of supply
disruption length, they did not consider the partial backorder, and the optimal inventory policy
variable cannot be derived in a closed-form expression. Another important feature is the way to
handle the shortage inventory of the retailer. Three possible cases may happen, i.e., lost sale,
partial backorder, and full backorder. Although De and Mahata (2020) and Taleizadeh and Dehkordi
(2017) considered the partial backorder and the optimal inventory policy variables can be derived
in a closed-form expression, they did not consider the continuous length of supply disruption. To
the best of our knowledge, none of the existing literature derives the closed-form expression for
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the optimal base stock level under a periodic review base stock inventory system by taking into
consideration the continuous variable of disruption length together with the partial backorder of
shortage inventory. Therefore, this study aims to fulfill this research gap.

The remaining sections of this paper are organized as follows. The existing literature related to
the derivation of optimal inventory policy will be reviewed. Next, the problem definition will be
addressed, and we will formulate the problem analytically. After that, numerical experiments will
be conducted. Lastly, we will draw conclusions as well as provides directions for further research.

2. Literature review
Parlar and Berkin (1991) were one of the first to investigate the supply disruption effect on
a traditional EOQ model. The mathematical model developed by Parlar and Berkin (1991) was
revised by Berk and Arreola-Risa (1994). Parlar et al. (1995) considered a periodic review inventory
policy with backlogging under both stochastic supply disruption effect and stochastic demand. The
supply process follows a geometric distribution so that inventory can only be either replenished or
unfulfilled. Parlar and Perry (1996) studied the effect of having multiple supply sources where each
supply source randomly runs into problems so that it cannot respond to an order. The result
reveals that the optimal inventory policy approaches an EOQ model as the number of sources of
supply becomes larger. Mohebbi (2003) investigated the stochastic supply disruption effect on
a continuous review inventory system. It was assumed that the demand follows a compound
Poisson distribution, and the lead time follows an Erlang distribution. The exact analytical expres-
sion of the costs is presented, and numerical experiments are conducted in order to derive the
optimal inventory policy variables. Relaxing the assumption of an Erlang distributed lead time of
Mohebbi (2003), Mohebbi (2004) considered Hyperexponentially distributed lead time. Atasoy et al.
(2012) examined the value of information when the information about supply availability can be
provided by the supplier in advance. The value of the information depends on the degree of
stationary of supply availability; that is, the value of the information increases with the degree
of supply variability. Schmitt and Snyder (2012) considered both disruption and yield uncertainty to
derive the optimal base stock level. Lewis et al. (2013) dealt with temporary closure in a port-of-
entry problem by using an inventory holding strategy and examined the effect of the temporary
closure on supply chain costs. Ciarallo and Niranjan (2014) took a capacity-constrained problem
characterized as the all-or-nothing type into consideration for deriving the optimal order-up-to
level. Firouzi et al. (2014) considered an (s,S) periodic review inventory system under stochastic
supply disruption for two products. The proposed model helps determine the optimal production
quantity, where there are switching costs between these two products. Hsieh and Putera (2018)
examined the manufacturer’s decision sourcing from an unreliable supplier. Both optimal order
quantity and optimal restoration capacity, which helps minimize total costs, are derived through
numerical experiments. Sevgen and Sargut (2019) examined the importance of the non-zero re-
order point in a continuous review system when both supplier and retailer are subject to stochastic
disruption. The results reveal cost savings from the non-zero re-order policy in certain cases.
Saithong and Luong (2019) investigated the supply disruption effect on a periodic review base
stock inventory system. They considered the supply disruption length as a continuous random
variable, and the optimal policy variable can always be derived. Furthermore, the numerical results
confirm the importance of taking into consideration the continuous stochastic variable of disrup-
tion length. Saithong and Luong (in press) considered an (r,S) continuous review inventory policy.
The function of the expected cost per unit of time is analytically formulated, and the existence of
optimal policy variables are confirmed through numerical experiments. It should be noted that
none of the above papers derives the optimal inventory policy variables in a closed-form
expression.

Of the existing literature that derives the optimal variables in a closed-form expression, Güllü
et al. (1999) considered three possible supply states in the derivation of optimal order-up-to level,
namely, fully available, fully unavailable, and incompletely available. A simple newsboy-like for-
mula is proposed in order to derive the optimal variables of the inventory policy in the case of all-or
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-nothing supply states. Li et al. (2004) investigated the case demand depends on the state of the
supplier, and the supply status is formulated by using an alternating renewal process. Warsing
et al. (2013) derived the optimal base stock level in a closed-form expression for some distributions
of demand. Konstantaras et al. (2019) derived a closed-form expression for optimal variables in an
(S,T) periodic review system. Both continuous and end-of-period cost accounting schemes are
considered.

Due to the merits of closed-form expression, some of the existing literature put effort into the
approximation of the optimal inventory policy variables. Heimann and Waage (2007) provided
closed-form approximate expressions for optimal variables of a (Q,r) continuous review system in
the case where the supplier randomly runs into disruption. Qi et al. (2009) studied the case where
both the supplier and retailer are subject to disruption and proposed a closed-form approximate
formula for the optimal order quantity as well as the error bounds. Schmitt et al. (2010) developed
a closed-form approximation for the optimal base stock level. Snyder (2014) introduced an
effective approximation of the EOQ model in which the theoretical and numerical bounds on
error in the cost are proposed. Bakal et al. (2017) investigated the value of allowing disruption
order, which is placed right at the beginning of the disruption period. Allowing the disruption order,
the cost significantly reduces. Furthermore, a simple heuristic is proposed, which helps determine
the optimal disruption order.

Some existing literature considers supply disruption as a result of the rejection of a defective
supply batch. Skouri et al. (2014) derived an exact expression for the optimal order quantity when
the supply batch was considered defective and was rejected on arrival. The shortage inventory was
fully backordered. Later, Salehi et al. (2016) relaxed the assumption of the full backorder of
shortage inventory and considered the case of a partial backorder and proposed a solution
method. Taleizadeh and Dehkordi (2017) considered the sampling inspection policy in addition to
partial backorder and a possibly defective supply batch. Subsequently, relaxing the assumption of
full payment at the time of the retailer’s receipt, Taleizadeh (2017) considered the case of advance
payment, proposing a solution algorithm and conducting numerical examples as well as sensitivity
analyses. De and Mahata (2020) considered various cost components as a linguistic triangular
dense fuzzy lock set in order to determine the optimal length of the consecutive supply batch and
the optimal time fraction of positive inventory level in an inventory cycle.

Of the recent literature considering various types of uncertainty to acquire the optimal inventory
policy, Jauhari et al. (2017) investigated into a production-inventory system considering imperfect
production, partial backorder, and inspection error to optimize the vendor’s production rate,
buyer’s review period length, and the number of deliveries. Relaxing the assumptions of fixed
ordering cost and vendor’s fixed set up cost, Jauhari and Saga (2017) considered fuzzy ordering
cost and reducible setup cost. Besides, considering the impact of carbon incentive and penalty
policy, Saga et al. (2019) determined the optimal inventory decisions under the constrained service
level. Fathalizadeh et al. (2019) considered the effect of product deterioration and the stochastic
inflation rate to determine the optimal inventory policy. A comparison between the average
annual cost modeling method and the discounted costs modeling method was made. Zhang
et al. (2019) studied a system comprised of a manufacturer, a backup manufacturer, and multiple
distributors. The distributors could receive goods from the backup manufacturer and/or other
distributor, and a robust emergency strategy was designed to tackle the supply disruption pro-
blem. Lücker et al. (2019) tackled the supply disruption problem by using inventory and reserve
capacity. The optimal inventory levels and the reserve capacity production rate were derived.

For other interesting literature, Shahbaz et al. (2019) addressed the effect of the disruption
problem on public sector construction projects. The disruption problem caused cost overruns and
delays. Flexibility and collaboration with stakeholders were the approaches used to tackle the
problem. Orgeldinger (2018) presented different approaches to mitigate the market risks in banks’
trading systems based on a specified standard. The new implementation could not only mitigate
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risks but also reduce operational implementation burdens. Spilbergs (2020) investigated the risk
drivers of housing loans in the presence of a financial crisis. It was found that various drivers could
have an effect on total risks: unemployment, income, GDP, house price index, wage growth, credit
history, etc.

Focusing on a periodic review base stock policy, to the extent of our knowledge, none of the
existing literature derives the optimal variable in a closed-form expression based simulta-
neously on a continuous variable of the disruption length and partial backorder of shortage
inventory. Table 1 shows the comparison between the existing literature and this research
work. Even though Hsieh and Putera (2018) and Saithong and Luong (2019) considered the
continuous variable of the disruption length, however, the shortage inventory was fully back-
ordered, and the issue of a closed-form expression for the optimal variable was not of interest.
Even though Salehi et al. (2016), Taleizadeh and Dehkordi (2017), Taleizadeh (2017), and De
and Mahata (2020) considered the partial backorder of shortage inventory and derived the
optimal variables of an inventory policy in closed-form expressions, however, the disruption
length is a multiple of the review intervals. The closed-form expression gain benefits, as
discussed in Heimann and Waage (2007), Qi et al. (2009), Schmitt et al. (2010), and Snyder
(2014), and the importance of considering the disruption length as an independent variable
from the inventory review interval is discussed in Saithong and Luong (2019). In summary, this
research work contributes to the literature by taking the continuous variable of the supply
disruption length together with the partial backorder of shortage inventory into consideration
for deriving the optimal base stock level in a closed-form expression.

Table 1. The comparison between the existing literature and the present research work

Authors Continuous variable
of supply disruption

length

Partial backorder Exact closed-form
expressions for

optimal variables
Parlar et al. (1995)

Güllü et al. (1999) ●

Li et al. (2004) ●

Schmitt et al. (2010)

Atasoy et al. (2012)

Schmitt and Snyder
(2012)

●

Lewis et al. (2013) ●

Warsing et al. (2013) ●

Ciarallo and Niranjan
(2014)

Firouzi et al. (2014)

Skouri et al. (2014) ●

Salehi et al. (2016) ● ●

Taleizadeh (2017) ● ●

Taleizadeh and Dehkordi
(2017)

● ●

Hsieh and Putera (2018) ●

Konstantaras et al. (2019) ●

Saithong and Luong
(2019)

●

De and Mahata (2020) ● ●

This research work ● ● ●
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3. Problem description and mathematical model formulation
Taking the two-echelon system into consideration, the supplier randomly runs into problems, and
the retailer has to devise an inventory policy to help mitigate the effect of stochastic supply
disruption. The retailer operates under a periodic review base stock policy in which the retailer
inspects the inventory position at every fixed interval (the review interval) and places an order so
that the inventory position is brought up-to the level of base stock. After placing the order, the
receipt will be immediate if the supplier is available. Nevertheless, if the supply is disrupted at the
retailer’s inventory review point in time, the retailer is not allowed to place an order and is
obligated to wait until the supplier turns to be available. The duration the retailer waits for placing
the order is random and does not depend on the inventory review interval. Unmet demand from
inventory is partially back-ordered and the rest is lost sale. The retailer’s interest is to determine
the optimal base stock level which helps minimize the costs per unit of time.

According to the above problem description, the following are assumed.
● The demand per day is a constant, i.e., demand is deterministic.

● The stochastic supply disruption profile is considered, i.e., the disruption length and disruption
arrival are exponentially distributed.

● Only effective supply disruption is considered; that is, it always delays the retailer’s order once it
occurs.

Then, the list of notations used in this research is as shown in Table 2.

Table 2. List of notations

Notation Description

λ The arrival rate of supply disruption

μ Parameter of exponential distribution representing the length of a supply disruption

β The fraction of amount of demand that is back-ordered

D Demand per day

CH Inventory holding costs per unit per day

CS Costs of lost sale per unit

CB Costs of backorder per unit per day

X The random variable representing the time until an arrival of supply disruption which is assumed
to follow an exponential distribution with rate λ, i.e., the density function of X is fXðxÞ ¼ λe�λx

Y The random variable representing the length of a supply disruption which is assumed to follow
an exponential distribution with rateμ, i.e., the density function of Y isfYðyÞ ¼ μe�μy

N The random variable representing the number of inventory cycles in a renewal cycle

T Length of an inventory review period

AjA>T The random variable representing the length of the last inventory cycle in a renewal cycle

Z The random variable representing the length of a renewal cycle

W The random variable representing the time elapsed from the last order placing before
a disruption occurs until the arrival of the disruption

S Base stock level

i Indices of possible scenarios of a renewal cycle:
i ¼ 1: The case when inventory is shortage in non-disrupted cycles
i ¼ 2: The case when inventory is not shortage in non-disrupted cycles

TCU if g Sð Þ Total costs per day, as a function of S, for case i

NDC if g Total costs in a non-disrupted cycle for case i

DC if g Total costs in the disrupted cycle, i.e., the last inventory cycle, for case i

S� if g Optimal base stock level for case i

S� Optimal base stock level

TCU S�ð Þ The minimum cost per time unit
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Because the retailer’s interest is to minimize the total costs per day, the renewal reward
theorem is used to formulate the retailer’s expected cost per day function (Ross, 1996). The length
of a renewal cycle is the interval between the occurrences of two consecutive disruptions, as seen
in Figure 1. A renewal cycle contains both inventory cycles in which disruption does not take place
(non-disrupted inventory cycles) and an inventory cycle in which supply disruption takes place. The
length of an inventory cycle is measured from the two consecutive receipts (receipt-to-receipt). For
non-disrupted inventory cycles, the inventory cycle length is the same as the inventory review
interval. On the other hand, the length of the last inventory cycle is perhaps longer than the
inventory review interval due to the unavailability of supply ceasing the retailer’s order. The
illustration of the possible scenarios of a renewal cycle is depicted in Figure 1.

There are two possible scenarios for a renewal cycle in the presence of supply disruption, as
seen in Figure 1(a and b). It should be noted that where shortage inventory is fully

Figure 1. Possible cases of
renewal cycle in the presence
of supply disruption.
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backordered and supply disruption does not exist (supply is always available), there will be
a planned backorder for each inventory cycle, and the formula that helps derive the optimal
base stock level appears in general text-books, such as Axsäter (2015). In the presence of
stochastic supply disruption, the optimal base stock level is supposed to be higher than this
level. Therefore, the stochastic supply disruption will raise the optimal base stock level and
causes either of the cases. We will derive the closed-form expression of the optimal base
stock level for each case and provide a solution method in order to identify the right scenario
of a renewal cycle so that we can derive the correct expression of the optimal base stock
level.

The remaining parts of this section are organized as follows. The derivation of the optimal
base stock level in the presence of stochastic supply disruption is shown in subsection 3.1. For
more detail, in this subsection, the expected cost functions and the corresponding components
are analyzed regarding the possible scenarios of a renewal cycle. Then, in subsection 3.2,
a solution method that helps derive the correct expression for the optimal base stock level is
proposed.

3.1. Optimal base stock level in the presence of stochastic supply disruption
As introduced earlier, there are two possible cases of a renewal cycle, and we need to
formulate the expected costs per day function for these two cases separately. In this
section, we discuss these two cases, and the optimal base stock level for each case is
addressed.

3.1.1. Optimal base stock level for the case inventory is shortage in non-disrupted cycles
Before deriving the optimal base stock level, which helps minimize the total costs per day for
this case, we first need to formulate the function of expected costs per day. The total costs in
a renewal cycle include holding costs, backorder costs, and lost sale costs. In a renewal cycle,
there are E N½ � � 1ð Þ cycles in which supply disruption is not effective and a cycle in which
supply disruption is effective. Therefore, the expected costs for the case of ineffective supply

disruption is E NDC 1f g� �
E N½ � � 1ð Þ, and for the case of effective supply disruption, the expected

costs is E DC 1f g� �
. Regarding the cycle length, the expected cycle length for the case of effective

disruption and ineffective disruption are E AjA>T
� �

and T, respectively. Incorporating these two

cases and dividing by the expected renewal cycle length, the expected total costs per day can
be derived as:

E TCU 1f g Sð Þ� � ¼ E NDC 1f g� �
E N½ � � 1ð Þ þ E DC 1f g� �

E Z½ � ¼ E NDC 1f g� �
E N½ � � 1ð Þ þ E DC 1f g� �

T E N½ � � 1ð Þ þ E AjA>T
� � (1)

In order to derive E TCU 1f g Sð Þ� �
, we need to determine E N½ �, E AjA>T

� �
, E NDC 1f g� �

, and E DC 1f g� �
accordingly. We will determine these components in the following subsections.

3.1.1.1. Determination of E N½ �. Referring to Saithong and Luong (2019), the random variable N has a
relationship with the random variable X. By definition, E N½ � ¼ ∑1

n¼1nP N ¼ nf g and P N ¼ nf g ¼
P n� 1ð ÞT � X � nTf g. E N½ � can be expressed as

E N½ � ¼ 1
1� e�λT (2)

3.1.1.2. Determination of fAjA>T ðaÞ and E AjA>T
� �

. From Figure 1, it can be seen that the random
variable AjA>T has a relationship with both the random variable W and the random variable Y,
namely, AjA>T ¼ Wþ Y. The probability density function of AjA>T can be determined from the
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convolution of W and Y. The derivation of fAjA>T ðaÞ is shown in Saithong and Luong (2019). Then, by

definition, E AjA>T
� � ¼ �1T afAjA>T ðaÞda. Referring to Saithong and Luong (2019), the expressions of

fAjA>T ðaÞ and E AjA>T
� �

follow:

fAjA>T ðaÞ ¼ μe�μ a�Tð Þ; a>T (3)

E AjA>T
� � ¼ Tþ 1

μ
(4)

3.1.1.3. Determination of E NDC 1f g� �
. For the total costs in a non-disrupted cycle, it consists of

inventory holding costs, backorder costs, and lost sale costs. The inventory holding costs is

CH S
2

� �
S
D

� �
. The costs of backorder is CB

β DT�Sð Þ
2

� �
DT�S
D

� �
. The costs of lost sale is CS 1� βð Þ DT � Sð Þ.

Therefore, E NDC 1f g� �
can be derived as:

E NDC 1f g� � ¼ CHS2

2D
þ CBβ DT� Sð Þ2

2D
þ CS 1� βð Þ DT � Sð Þ (5)

3.1.1.4. Determination of E DC 1f g� �
. In order to derive E DC 1f g� �

, we need to determine E DC 1f g��
AjA>T¼a

h i
first. Utilizing the computing of the expectation by conditioning technique, we will get

E DC 1f g� � ¼ �1T E DC 1f g��
AjA>T¼a

h i
fAjA>T ðaÞda. From Figure 2, evaluating at AjA>T ¼ a, the expected holding

costs, backorder costs, and lost sale costs are CH S
2

� �
S
D

� �
, CB

β Da�Sð Þ
2

� �
Da�S
D

� �
, and CS 1� βð Þ Da� Sð Þ,

respectively. Then, E DC 1f g��
AjA>T¼a

h i
can be derived as:

E DC 1f g��
AjA>T¼a

h i
¼ CHS2

2D
þ CBβ Da� Sð Þ2

2D
þ CS 1� βð Þ Da� Sð Þ

The first term of the above equation represents the expected holding costs, which can be deter-
mined from the CH value multiplies by the area under the inventory level curve when inventory is
holding in Figure 2. The second term represents the expected backorder costs. It can be

Figure 2. The last inventory
cycle when i ¼ 1.
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determined from the CB value multiplies by the area under the inventory level curve when the
inventory is shortage, but back-ordered in Figure 2. The last term represents the costs of lost sale
of shortage inventory. The lost sale costs can be determined from the CS value multiplies by the

number of units of lost sale. After that, E DC 1f g� �
can be derived as:

E DC 1f g� � ¼ ð1
T

CHS2

2D
þ CBβ Da� Sð Þ2

2D
þ CS 1� βð Þ Da� Sð Þ

 !
fAjA>T ðaÞda

From (3), fAjA>T ðaÞ ¼ μe�μ a�Tð Þ and the above equation yields:

E DC 1f g� � ¼ ð1
T

CHS2

2D

	 

μe�μ a�Tð Þ
� �

daþ
ð1
T

CBβ Da� Sð Þ2
2D

 !
μe�μ a�Tð Þ
� �

da

þ
ð1
T

CS 1� βð Þ Da� Sð Þ μe�μ a�Tð Þ
� �

da

Finally, we have:

E DC 1f g� � ¼ CHS2

2D
þ CBβ

DT2

2
þ S2

2D
þ Tþ 1

μ

	 

D
μ
� S

	 
	 

þ CS 1� βð Þ D T þ 1

μ

	 

� S

	 

(6)

3.1.1.5. Optimal base stock level for the casei ¼ 1. The optimal base stock level, which helps achieve

the minimumE TCU 1f g Sð Þ� �
, can be derived from

dE TCU 1f g Sð Þ½ �
dS ¼ 0. Therefore, we need to know the exact

expression of E TCU 1f g Sð Þ� �
first and, by replacing all corresponding components in (1) with E N½ �,

E NDC 1f g� �
, E AjA>T
� �

, E DC 1f g� �
derived in (2), (5), (4), and (6), respectively, we will have:

E TCU 1f g Sð Þ� � ¼

CHS2
2D þ CBβ DT�Sð Þ2

2D þ CS 1� βð Þ DT � Sð Þ
� �

e�λT

1�e�λT

� �

þ
CHS2
2D þ CBβ DT2

2 þ S2
2D þ Tþ 1

μ

� �
D
μ � S
� �� �

þCS 1� βð Þ D T þ 1
μ

� �
� S

� �
0
@

1
A

2
6664

3
7775

T
1�e�λT þ 1

μ

� � (7)

The expression of S� 1f g and the proof of convexity function are determined by Proposition 1.

Proposition 1.

(i) E TCU 1f g Sð Þ� �
is convex in S;

(ii) S� 1f g ¼
D

CS 1�βð Þ
1�e�λTð ÞþCBβ T

1�e�λTð Þþ
1
μ

� �� �
CHþCBβ

1�e�λTð Þ

� � .

Proof.

(i) Taking the derivative of (7) with respect to S, we have:

dE TCU 1f g Sð Þ� �
dS

¼

CHS
D � CBβTþ CBβS

D � CS 1� βð Þ
� �

e�λT

1�e�λT

� �
þ CHS

D � CBβ T þ 1
μ

� �
þ CBβS

D � CS 1� βð Þ
� �

2
4

3
5

T
1�e�λT þ 1

μ

� �
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d2E TCU 1f g Sð Þ� �
dS2

¼
CH
D þ CBβ

D

� �
e�λT

1�e�λT

� �
þ CH

D þ CBβ
D

� �h i
T

1�e�λT þ 1
μ

� � ¼
CHþCBβ

D

� �
1

1�e�λT

� �
T

1�e�λT þ 1
μ

� � >0

Therefore, E TCU 1f g Sð Þ� �
is convex in S □

ðiÞ dE TCU 1f g S� 1f g� �� �
dS

¼

CHS� 1f g
D � CBβT þ CBβS� 1f g

D � CS 1� βð Þ
� �

e�λT

1�e�λT

� �
þ CHS� 1f g

D � CBβ Tþ 1
μ

� �
þ CBβS� 1f g

D � CS 1� βð Þ
� �

2
4

3
5

T
1�e�λT þ 1

μ

� � ¼ 0

S� 1f g ¼
D CS 1�βð Þ

1�e�λTð Þ þ CBβ T
1�e�λTð Þ þ 1

μ

� �� �
CHþCBβ
1�e�λTð Þ

� �

□

3.1.2. Optimal base stock level for the case of no shortage inventory in non-disrupted cycles
As with the determination of E TCU 1f g Sð Þ� �

, E TCU 2f g Sð Þ� �
can be determined as:

E TCU 2f g Sð Þ� � ¼ E NDC 2f g� �
E N½ � � 1ð Þ þ E DC 2f g� �

T E N½ � � 1ð Þ þ E AjA>T
� � (8)

It should be noted that E N½ � and E AjA>T
� �

are the same as the case i ¼ 1 and can be derived from

(2) and (4), respectively. Therefore, the remaining terms are E NDC 2f g� �
, and E DC 2f g� �

. We will

determine these two components in the following subsections.

3.1.2.1. Determination ofE NDC 2f g� �
. The total costs in a non-disrupted cycle when inventory is not

shortage consists only inventory holding costs and can be derived as:

E NDC 2f g� � ¼ CHT 2S� DTð Þ
2

(9)

Figure 3. The possible scenarios
of the last inventory cycle when
i ¼ 2.
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3.1.2.2. Determination of E DC 2f g� �
. There are two possible scenarios for the last inventory cycle when

i ¼ 2, as seen in Figure 3. The technique utilized to compute E DC 2f g� �
is the same as the technique

utilized to compute E DC 1f g� �
, namely, E DC 2f g� � ¼ �1T E DC 2f g��

AjA>T¼a

h i
fAjA>T ðaÞda. Therefore, E DC 2f g� �

can

be determined as:

E DC 2f g� � ¼ ð
S
D

T

CH 2S� Dað Þa
2

	 

fAjA>T ðaÞdaþ

ð1
S
D

CHS2

2D

	 

fAjA>T ðaÞda

þ
ð1
S
D

CBβ Da� Sð Þ2
2D

 !
fAjA>T ðaÞdaþ

ð1
S
D

CS 1� βð Þ Da� Sð Þð ÞfAjA>T ðaÞda

From (3), fAjA>T ðaÞ ¼ μe�μ a�Tð Þ and the above equation yields:

E DC 2f g� � ¼ CH S� DTð Þ
μ

þ CHD
μ2

e�μ S�DT
Dð Þ � 1

� �
þ CHT 2S� DTð Þ

2

þ CS 1� βð ÞDe�μ S�DT
Dð Þ

μ

 !
þ CBβDe�μ S�DT

Dð Þ
μ2

 ! (10)

3.1.2.3. Optimal base stock level for the casei ¼ 2. Substitute E N½ �, E AjA>T
� �

, E NDC 2f g� �
, and E DC 2f g� �

derived in (2), (4), (9), and (10), respectively, for each corresponding component in (8), E TCU 2f g Sð Þ� �
can be determined as:

Figure 4. Flow chart of solution
method.
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E TCU 2f g Sð Þ� � ¼ E NDC 2f g� �
E N½ � � 1ð Þ þ E DC 2f g� �

T E N½ � � 1ð Þ þ E AjA>T
� �

¼

CHT 2S�DTð Þ
2

� �
1

1�e�λT

� �� 1
� �þ

CH S�DTð Þ
μ þ CHD

μ2
e�μ S�DT

Dð Þ � 1
� �

þ CHT 2S�DTð Þ
2

þ CS 1�βð ÞDe�μ S�DT
Dð Þ

μ

	 

þ CBβDe

�μ S�DT
Dð Þ

μ2

	 

2
64

3
75

T 1
1�e�λT

� �� 1
� �þ Tþ 1

μ

� �

Finally, we have:

E TCU 2f g Sð Þ� � ¼

CH S�DTð Þ
μ þ CHD

μ2
e�μ S�DT

Dð Þ � 1
� �

þ CHT 2S�DTð Þ
2 1�e�λTð Þ

þ CS 1�βð ÞDe�μ S�DT
Dð Þ

μ

	 

þ CBβDe

�μ S�DT
Dð Þ

μ2

	 

2
64

3
75

T
1�e�λT þ 1

μ

� � (11)

Then, the expression of S� 2f g and the proof of convexity function are determined by Proposition 2.

Proposition 2.

(i) E TCU 2f g Sð Þ� �
is convex in S;

(ii) S� 2f g ¼ DT �
D ln

CH
T

1�e�λTþ
1
μ

� �
CH
μ þβCB

μ þ 1�βð ÞCS

0
@

1
A

μ

Proof.

(i)
d2E TCU 2f g Sð Þ½ �

dS2 ¼ CHþβCBþμ 1�βð ÞCSð Þe�μ S�DT
Dð Þ

D T
1�e�λTð Þþ

1
μ

� � >0.

Therefore, E TCU Sð Þ 2f g
h i

is convex in S □

(ii)

dE TCU 2f g S� 2f g� �� �
dS

¼
CH T

1�e�λTð Þ þ 1
μ 1� e

�
μ S� 2f g�DTð Þ

D

� �0
@

1
A

0
@

1
A� βCB þ 1� βð ÞCSð Þe �

μ S� 2f g�DTð Þ
D

� �2
4

3
5

T
1�e�λT þ 1

μ

� � ¼ 0

.

S� 2f g ¼ DT �
D ln

CH T
1�e�λTþ1

μ

� �
CH
μ þ

βCB
μ þ 1�βð ÞCS

0
@

1
A

μ

□

3.2. Solution method to manifest the correct expression of optimal base stock level
In the above subsections, we determined the expressions for the optimal base stock level of two
possible scenarios of a renewal cycle. However, given a set of parameter values, we still do not
know whether the first or the second scenario will happen and which of the formulas should be
used. In this section, we draw a solution method so that the corresponding expression of the
optimal base stock level can be employed properly, namely, S� 1f g or S� 2f g.
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To begin with, Proposition 1 and Proposition 2 reveal that both E TCU 1f g Sð Þ� �
and E TCU 2f g Sð Þ� �

are
convex functions in S. Because the correct use of S�’s expression depends on the value of DT, which
is the changing point for identifying the right scenario of a renewal cycle, we will examine

E TCU 1f g Sð Þ� �
and E TCU 2f g Sð Þ� �

when S ¼ DT, and the following proposition holds.

Proposition 3. If S ¼ DT, E TCU 1f g DTð Þ� � ¼ E TCU 2f g DTð Þ� �
.

Proof.

From (7), E TCU 1f g DTð Þ� �
can be determined as:

E TCU 1f g Sð Þ� � ¼

CHS2
2D þ CBβ DT�Sð Þ2

2D þ CS 1� βð Þ DT � Sð Þ
� �

e�λT

1�e�λT

� �

þ
CHS2
2D þ CBβ DT2

2 þ S2
2D þ Tþ 1

μ

� �
D
μ � S
� �� �

þCS 1� βð Þ D T þ 1
μ

� �
� S

� �
0
@

1
A

2
6664

3
7775

T
1�e�λT þ 1

μ

� �

E TCU 1f g DTð Þ� � ¼

CH DTð Þ2
2D þ CBβ DT�DTð Þ2

2D þ CS 1� βð Þ DT � DTð Þ
� �

e�λT

1�e�λT

� �

þ
CH DTð Þ2

2D þ CBβ DT2
2 þ DTð Þ2

2D þ Tþ 1
μ

� �
D
μ � DTð Þ
� �� �

þCS 1� βð Þ D Tþ 1
μ

� �
� DTð Þ

� �
0
@

1
A

2
6664

3
7775

T
1�e�λT þ 1

μ

� �

Finally,

E TCU 1f g DTð Þ� � ¼ CHDT2

2 1�e�λTð Þ
� �

þ CBβD
μ2

þ CS 1�βð ÞD
μ

h i
T

1�e�λT þ 1
μ

� �

Also, from (11), E TCU 2f g DTð Þ� �
can be determined as:

E TCU 2f g Sð Þ� � ¼

CH S�DTð Þ
μ þ CHD

μ2
e�μ S�DT

Dð Þ � 1
� �

þ CHT 2S�DTð Þ
2 1�e�λTð Þ

þ CS 1�βð ÞDe�μ S�DT
Dð Þ

μ

	 

þ CBβDe

�μ S�DT
Dð Þ

μ2

	 

2
64

3
75

T
1�e�λT þ 1

μ

� �

E TCU 2f g DTð Þ� � ¼

CH DT�DTð Þ
μ þ CHD

μ2
e�μ DT�DT

Dð Þ � 1
� �

þ CHT 2DT�DTð Þ
2 1�e�λTð Þ

þ CS 1�βð ÞDe�μ DT�DT
Dð Þ

μ

	 

þ CBβDe

�μ DT�DT
Dð Þ

μ2

	 

2
64

3
75

T
1�e�λT þ 1

μ

� �

Finally,

E TCU 2f g DTð Þ� � ¼ CHDT2

2 1�e�λTð Þ
� �

þ CS 1�βð ÞD
μ þ CBβD

μ2

h i
T

1�e�λT þ 1
μ

� �
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□

At S ¼ DT, E TCU 1f g DTð Þ� � ¼ E TCU 2f g DTð Þ� �
Proposition 3 leads to the fact that the functions of E TCU 1f g DTð Þ� �

and E TCU 2f g DTð Þ� �
can follow

any patterns; however, both E TCU 1f g DTð Þ� �
and E TCU 2f g DTð Þ� �

result in the same value of the

expected costs per day at S ¼ DT.

For the sake of reasonableness, S� 1f g<DT and S� 2f g>DT. If only one of them holds true, it is
possible to determine the correct expression for the optimal base stock level. However, if both of

them hold true, a difficulty arises. Following, various cases are analyzed: S� 1f g<DT and S� 2f g>DT,

S� 1f g>DT and S� 2f g<DT, S� 1f g or S� 2f g ¼ DT.

Proposition 4. It is impossible that the situation S� 1f g<DT and S� 2f g>DT will occur simultaneously.

Proof.

Substitute the expression of S� 1f g into S� 1f g<DT, we have:

CS 1� βð Þ
1� e�λT þ βCB

μ
<

TCH
1� e�λT

As with above, substitute the expression of S� 2f g into S� 2f g>DT, we have:

CS 1� βð Þ þ βCB
μ

>
TCH

1� e�λT

Due to the fact that CS 1�βð Þ
1�e�λT þ βCB

μ � CS 1� βð Þ þ βCB
μ and the situation S� 1f g<DT and S� 2f g>DT will not

occur simultaneously. □

Proposition 4 provides the fact that only either S� 1f g<DT or S� 2f g>DT holds true for a given set of

parameters value. Therefore, in case both S� 1f g<DT and S� 2f g<DT, the correct expression follows

S� 1f g (because S� 2f g cannot be less than DT). Also, in case both S� 1f g>DT and S� 2f g>DT, the correct

expression follows S� 2f g (because S� 1f g cannot be greater than DT).

For the case both S� 1f g>DT and S� 2f g<DT, the correct expression for the optimal base stock level
has not been addressed. Proposition 5 helps derive the correct expression for the case.

Proposition 5.

(i) If S� 1f g>DT and S� 2f g<DT, the expression for optimal base stock level is S� ¼ DT;

(ii) The parameters’ values leading to the condition S� 1f g>DT and S� 2f g<DT must

satisfy CS 1� βð Þ þ βCB
μ < TCH

1�e�λT <
CS 1�βð Þ
1�e�λT þ βCB

μ .

Proof.

Both S� 1f g>DT and S� 2f g<DT are infeasible. E TCU 1f g Sð Þ� �
is the effective expression addressing the

total cost per time unit for 0 � S<DT while E TCU 2f g Sð Þ� �
is the effective expression for S>DT. For

S ¼ DT, both E TCU 1f g Sð Þ� �
and E TCU 2f g Sð Þ� �

are effective, as illustrated in Proposition 3. Considering

the characteristics of E TCU 1f g Sð Þ� �
and E TCU 2f g Sð Þ� �

in this case, E TCU 1f g Sð Þ� �
decreases when S

increases for 0 � S � DT, due to S� 1f g>DT, and E TCU 2f g Sð Þ� �
increases when S increases for S>DT,
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due to S� 2f g<DT. Therefore, DT is the optimal base stock level and, according to Proposition

3, E TCU 1f g DTð Þ� � ¼ E TCU 2f g DTð Þ� �
. □

Substitute the expression of S� 1f g into S� 1f g>DT, we have:

CS 1� βð Þ
1� e�λT þ βCB

μ
>

TCH
1� e�λT

As with above, substitute the expression of S� 2f g into S� 2f g<DT, we have:

CS 1� βð Þ þ βCB
μ

<
TCH

1� e�λT

Therefore, the parameters’ values leading to the condition S� 1f g>DT and S� 2f g<DT must

satisfy CS 1� βð Þ þ βCB
μ < TCH

1�e�λT <
CS 1�βð Þ
1�e�λT þ βCB

μ . □

Next, in order to examine whether the cases S� 1f g ¼ DT and S� 2f g>DT; or S� 2f g ¼ DT and S� 1f g<DT
will not occur, the following proposition holds.

Proposition 6.

(i) If S� 1f g ¼ DT, the condition under which S� 1f g ¼ DT leads to the fact that S� 2f g � DT. However,

S� 2f g<DT is infeasible. Therefore, the optimal base stock level is S� ¼ DT;

(ii) If S� 2f g ¼ DT, the condition under which S� 2f g ¼ DT leads to the fact that S� 1f g � DT. However,

S� 1f g>DT is infeasible. Therefore, the optimal base stock level is S� ¼ DT.

Proof.

(i) From a proof of Proposition 4, the condition under which S� 1f g ¼ DT is βCB
μ ¼ TCH

1�e�λT � CS 1�βð Þ
1�e�λT .

Replacing βCB
μ into the expression of S� 2f g, we have:

S� 2f g ¼ DT �
D ln

CHT

1�e�λTþ
CH
μ

CH
μ þ

CHT

1�e�λT�CS 1�βð Þ 1
1�e�λT�1

� �
0
@

1
A

μ

Because 1
1�e�λT � 1
� � � 0. Therefore, ln

CHT

1�e�λTþ
CH
μ

CH
μ þ

CHT

1�e�λT�CS 1�βð Þ 1
1�e�λT�1

� �
0
@

1
A � 0 and S� 2f g � DT. □

(ii) From a proof of Proposition 4, the condition under which S� 2f g ¼ DT is βCB
μ ¼ TCH

1�e�λT � CS 1� βð Þ.
Replacing βCB

μ into the expression of S� 1f g, we have:

S� 1f g ¼ D Tþ CS 1� βð Þe�λT

CH þ CBβ

	 
	 


Because CS 1�βð Þe�λT

CHþCBβ

� �
� 0. Therefore, S� 1f g � DT. □

In order to draw the solution method, the following are performed. First, S� 1f g and S� 2f g are

computed using Proposition 1 and Proposition 2, respectively. According to Proposition 4, S� ¼ S� 1f g

if S� 1f g<DT; and S� ¼ S� 2f g if S� 2f g>DT. If both S� 1f g>DT and S� 2f g<DT, S� ¼ DT, according to

Proposition 5; and E TCU S�ð Þ½ � ¼ E TCU 1f g DTð Þ� � ¼ E TCU 2f g DTð Þ� �
, according to Proposition 3.

According to Proposition 6, if either S� 1f g ¼ DT or S� 2f g ¼ DT, S� ¼ DT. The following figure
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summarizes the proposed solution method to derive the optimal base stock level as well as the
minimum cost per time unit, as seen in Figure 4.

4. Numerical experiments
The main purpose of this section is to illustrate the applicability of the proposed solution method.
First, the following values of parameters are assumed and referred to as base case: D ¼ 5 units
per day, T ¼ 10days CH ¼ 1$ per unit per day, CS ¼ 20$ per unit, CB ¼ 5$ per unit per day,

λ ¼ 0:05times per day, μ ¼ 0:1times per day, β ¼ 0:5. Subject to the values of parameters, S� 1f g ¼
64:05 units, and S� 2f g ¼ 61:98 units. According to the flow chart of the solution method, S� ¼
S� 2f g ¼ 61:98 units and the corresponding E TCU S�ð Þ½ � ¼ E TCU 2f g S�ð Þ� � ¼ 65:80 $ per day. Next, we

will conduct sensitivity analyses.

The optimal base stock level and minimum cost per day for various values of β, λ, and μ are
shown in Appendix A (Table A1-A4). As expected, the increase in the value of μ decreases the
optimal base stock level and the corresponding minimum cost per day decreases. On the other
hand, the increase in the value of λ increases the optimal base stock level, and the corresponding
minimum cost per day also increases. These trends make sense because a higher value of μ means
that the mean of disruption length is shorter, and a higher value of λ leads to the fact that the
supply disruption is more likely to occur.

Changing the value of cost parameters (CS, CB, CH), we will examine the behavior of the proposed
model. The optimal base stock level and minimum cost per day for various values of cost para-
meters are shown in Appendix B (Figure B1-B6). It can be seen that E TCU S�ð Þ½ � increases as the
value of cost parameters increases. Regarding the effect of changing in CH value on S�, the increase
in CH value usually causes the decrease in S�; and the special cases where the increase in CH value
does not change S� will be discussed later. Examining the effect of shortage inventory costs (CS, CB)
on S�, the increase in CS value usually causes the increase in S�; likewise, the increase in CB value
usually causes the increase in S�. The main reason for the behavior is that the retailer should
prevent excessive shortage inventory costs by increasing the base stock level as the shortage
inventory costs increases. For those cases that the increase in holding costs and shortage costs
does not change S�, the parameters’ values leading to the cases satisfy the condition proposed in
Proposition 5. Therefore, there exist some cases that the optimal base stock level is insensitive to
the changing in the value of cost parameters.

All in all, it can be confirmed that the optimal level of base stock and the corresponding
minimum cost per day can always be determined. The proposed solution method helps managers
derive the optimal level of base stock conveniently. Regarding the effect of changing in the value of
important parameters, the retailer should increase the level of base stock in the presence of the
increase in disruption frequency or the increase in disruption length. Usually, the retailer should
decrease the base stock level as the holding costs increases; and the retailer should increase the
base stock level as the shortage costs increases. The cases that the base stock level is insensitive
to the changing in the value of cost parameters can also be detected.

5. Conclusions
In this research work, inventory holding is used to cope with a supply disruption problem. Under
a periodic review base stock system, the retailer is supposed to determine the optimal base stock
level, which helps minimize the costs per unit of time. The retailer’s expected cost per unit of time
function is formulated, and all possible scenarios of a renewal cycle, as well as the associated
costs, are analyzed. The current research work is distinguished from the existing literature as it
uses a continuous variable of the disruption length together with partial backorder to derive the
closed-form expression for the optimal base stock level. A solution method is proposed in order to
derive the correct expression for the optimal base stock level as well as the minimum costs per
unit of time. In the numerical experiment section, we investigate the behaviors of the system for
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various values of input parameters through the use of the proposed structural result. It can be
confirmed that the optimal base stock level, which minimizes the costs per unit of time, can always
be determined. Complementary to the finding, the optimal base stock level for some cases are
found to be insensitive to the changing in value of cost parameters. From a managerial perspec-
tive, since the closed-form expression is derived and the optimal base stock level can be easily
computed through a few steps, the proposed solution method helps managers obtain it precisely
and conveniently in the presence of stochastic supply disruption. Despite the merits, the assump-
tion of deterministic demand is assumed in this research work, and it could be relaxed by
considering stochastic demand. The derivation of an approximate/exact closed-form expression
for the optimal base stock level by considering the continuous variable of the disruption length,
partial backorder, and stochastic demand has not been examined before. Therefore, we note this
vacant issue as a further research topic.
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Appendix A.

Table A1. Optimal base stock level and minimum cost per day for β= 1.00

β λ μ S� 1f g S� 2f g E TCU 1f g�
S� 1f g� ��

E TCU 2f g�
S� 2f g� ��

S� E TCU S�ð Þ½ �

1.00 0.01 0.05 49.60 45.85 100.94 100.86 49.60 100.94

1.00 0.01 0.10 45.63 17.43 43.51 35.92 45.63 43.51

1.00 0.01 0.50 42.46 28.11 22.12 12.46 42.46 22.12

1.00 0.01 1.00 42.06 35.64 21.26 15.35 42.06 21.26

1.00 0.01 5.00 41.75 45.53 20.88 21.48 41.75 20.88

1.00 0.01 10.00 41.71 47.42 20.86 22.89 41.71 20.86

1.00 0.01 20.00 41.69 48.54 20.84 23.77 41.69 20.84

1.00 0.05 0.05 74.46 147.17 214.10 167.12 147.17 167.12

1.00 0.05 0.10 58.06 76.36 85.73 80.18 76.36 80.18

1.00 0.05 0.50 44.95 41.74 25.40 24.18 44.95 25.40

1.00 0.05 1.00 43.31 42.59 22.41 21.45 43.31 22.41

1.00 0.05 5.00 41.99 46.94 21.03 22.74 41.99 21.03

1.00 0.05 10.00 41.83 48.12 20.92 23.53 41.83 20.92

1.00 0.05 20.00 41.75 48.89 20.88 24.09 41.75 20.88

1.00 0.10 0.05 94.34 170.90 238.11 176.11 170.90 176.11

1.00 0.10 0.10 68.01 92.16 100.23 88.11 92.16 88.11

1.00 0.10 0.50 46.93 46.05 27.31 27.12 46.93 27.31

1.00 0.10 1.00 44.30 44.85 23.17 23.06 44.30 23.17

1.00 0.10 5.00 42.19 47.41 21.14 23.08 42.19 21.14

1.00 0.10 10.00 41.93 48.36 20.98 23.70 41.93 20.98

1.00 0.10 20.00 41.80 49.01 20.90 24.18 41.80 20.90

1.00 0.50 0.05 124.44 188.40 229.63 180.26 188.40 180.26

1.00 0.50 0.10 83.05 104.76 104.23 92.39 104.76 92.39

1.00 0.50 0.50 49.94 49.94 29.14 29.14 49.94 29.14

1.00 0.50 1.00 45.81 46.94 24.04 24.23 45.81 24.04

1.00 0.50 5.00 42.49 47.85 21.30 23.35 42.49 21.30

1.00 0.50 10.00 42.08 48.58 21.05 23.83 42.08 21.05

1.00 0.50 20.00 41.87 49.12 20.94 24.25 41.87 20.94

1.00 1.00 0.05 125.00 188.63 229.17 180.30 188.63 180.30

1.00 1.00 0.10 83.33 104.93 104.17 92.43 104.93 92.43

1.00 1.00 0.50 50.00 50.00 29.17 29.17 50.00 29.17

1.00 1.00 1.00 45.83 46.97 24.05 24.24 45.83 24.05

1.00 1.00 5.00 42.50 47.86 21.30 23.35 42.50 21.30

1.00 1.00 10.00 42.08 48.59 21.05 23.84 42.08 21.05

1.00 1.00 20.00 41.87 49.12 20.94 24.25 41.87 20.94

1.00 5.00 0.05 125.00 188.63 229.17 180.30 188.63 180.30

1.00 5.00 0.10 83.33 104.93 104.17 92.43 104.93 92.43

1.00 5.00 0.50 50.00 50.00 29.17 29.17 50.00 29.17

1.00 5.00 1.00 45.83 46.97 24.05 24.24 45.83 24.05

1.00 5.00 5.00 42.50 47.86 21.30 23.35 42.50 21.30

(Continued)
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β λ μ S� 1f g S� 2f g E TCU 1f g�
S� 1f g� ��

E TCU 2f g�
S� 2f g� ��

S� E TCU S�ð Þ½ �

1.00 5.00 10.00 42.08 48.59 21.05 23.84 42.08 21.05

1.00 5.00 20.00 41.88 49.12 20.94 24.25 41.88 20.94

1.00 10.00 0.05 125.00 188.63 229.17 180.30 188.63 180.30

1.00 10.00 0.10 83.33 104.93 104.17 92.43 104.93 92.43

1.00 10.00 0.50 50.00 50.00 29.17 29.17 50.00 29.17

1.00 10.00 1.00 45.83 46.97 24.05 24.24 45.83 24.05

1.00 10.00 5.00 42.50 47.86 21.30 23.35 42.50 21.30

1.00 10.00 10.00 42.08 48.59 21.05 23.84 42.08 21.05

1.00 10.00 20.00 41.88 49.12 20.94 24.25 41.88 20.94

Table A2. Optimal base stock level and minimum cost per day for β= 0.50

β λ μ S� 1f g S� 2f g E TCU 1f g�
S� 1f g� ��

E TCU 2f g�
S� 2f g� ��

S� E TCU S�ð Þ½ �

0.50 0.01 0.05 56.80 5.30 67.61 60.32 50.00 67.61

0.50 0.01 0.10 53.40 3.05 37.66 21.53 50.00 37.66

0.50 0.01 0.50 50.68 31.60 25.92 15.94 50.00 25.92

0.50 0.01 1.00 50.34 39.69 25.35 19.41 50.00 25.35

0.50 0.01 5.00 50.07 47.71 25.05 23.66 50.00 25.05

0.50 0.01 10.00 50.03 48.84 25.02 24.32 50.00 25.02

0.50 0.01 20.00 50.02 49.42 25.01 24.65 50.00 25.01

0.50 0.05 0.05 78.10 106.62 130.63 126.57 106.62 126.57

0.50 0.05 0.10 64.05 61.98 62.40 65.80 61.98 65.80

0.50 0.05 0.50 52.81 45.22 28.39 27.67 50.00 28.39

0.50 0.05 1.00 51.41 46.64 26.35 25.51 50.00 26.35

0.50 0.05 5.00 50.28 49.13 25.21 24.92 50.00 25.21

0.50 0.05 10.00 50.14 49.55 25.10 24.95 50.00 25.10

0.50 0.05 20.00 50.07 49.77 25.05 24.97 50.00 25.05

0.50 0.10 0.05 95.15 130.35 147.03 135.56 130.35 135.56

0.50 0.10 0.10 72.58 77.78 72.17 73.73 77.78 73.73

0.50 0.10 0.50 54.52 49.53 29.98 30.60 50.00 29.98

0.50 0.10 1.00 52.26 48.90 27.06 27.12 50.00 27.06

0.50 0.10 5.00 50.45 49.60 25.34 25.27 50.00 25.34

0.50 0.10 10.00 50.23 49.78 25.16 25.12 50.00 25.16

0.50 0.10 20.00 50.11 49.89 25.08 25.06 50.00 25.08

0.50 0.50 0.05 120.95 147.86 148.93 139.71 147.86 139.71

0.50 0.50 0.10 85.47 90.38 77.65 78.00 90.38 78.00

0.50 0.50 0.50 57.09 53.43 31.82 32.63 53.43 32.63

0.50 0.50 1.00 53.55 50.99 27.99 28.28 50.99 28.28

0.50 0.50 5.00 50.71 50.04 25.52 25.53 50.04 25.53

0.50 0.50 10.00 50.35 50.01 25.25 25.26 50.01 25.26

0.50 0.50 20.00 50.18 50.00 25.13 25.13 50.00 25.13
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Table A2. (Continued)

β λ μ S� 1f g S� 2f g E TCU 1f g�
S� 1f g� ��

E TCU 2f g�
S� 2f g� ��

S� E TCU S�ð Þ½ �

0.50 1.00 0.05 121.43 148.08 148.81 139.75 148.08 139.75

0.50 1.00 0.10 85.71 90.55 77.68 78.05 90.55 78.05

0.50 1.00 0.50 57.14 53.48 31.85 32.65 53.48 32.65

0.50 1.00 1.00 53.57 51.02 28.00 28.30 51.02 28.30

0.50 1.00 5.00 50.71 50.05 25.52 25.54 50.05 25.54

0.50 1.00 10.00 50.36 50.01 25.26 25.26 50.01 25.26

0.50 1.00 20.00 50.18 50.00 25.13 25.13 50.00 25.13

0.50 5.00 0.05 121.43 148.08 148.81 139.75 148.08 139.75

0.50 5.00 0.10 85.71 90.55 77.68 78.05 90.55 78.05

0.50 5.00 0.50 57.14 53.48 31.85 32.65 53.48 32.65

0.50 5.00 1.00 53.57 51.02 28.00 28.30 51.02 28.30

0.50 5.00 5.00 50.71 50.05 25.52 25.54 50.05 25.54

0.50 5.00 10.00 50.36 50.01 25.26 25.26 50.01 25.26

0.50 5.00 20.00 50.18 50.00 25.13 25.13 50.00 25.13

0.50 10.00 0.05 121.43 148.08 148.81 139.75 148.08 139.75

0.50 10.00 0.10 85.71 90.55 77.68 78.05 90.55 78.05

0.50 10.00 0.50 57.14 53.48 31.85 32.65 53.48 32.65

0.50 10.00 1.00 53.57 51.02 28.00 28.30 51.02 28.30

0.50 10.00 5.00 50.71 50.05 25.52 25.54 50.05 25.54

0.50 10.00 10.00 50.36 50.01 25.26 25.26 50.01 25.26

0.50 10.00 20.00 50.18 50.00 25.13 25.13 50.00 25.13

Table A3. Optimal base stock level and minimum cost per day for β= 0.10

β λ μ S� 1f g S� 2f g E TCU 1f g�
S� 1f g� ��

E TCU 2f g�
S� 2f g� ��

S� E TCU S�ð Þ½ �

0.10 0.01 0.05 79.84 −45.78 32.17 9.24 50.00 32.17

0.10 0.01 0.10 78.25 −12.46 21.89 6.03 50.00 21.89

0.10 0.01 0.50 76.98 33.71 15.59 18.06 50.00 15.59

0.10 0.01 1.00 76.83 41.53 14.94 21.25 50.00 14.94

0.10 0.01 5.00 76.70 48.25 14.45 24.20 50.00 14.45

0.10 0.01 10.00 76.68 49.12 14.39 24.60 50.00 14.39

0.10 0.01 20.00 76.67 49.56 14.36 24.80 50.00 14.36

0.10 0.05 0.05 89.78 55.54 62.36 75.49 55.54 75.49

0.10 0.05 0.10 83.22 46.47 38.53 50.29 50.00 38.53

0.10 0.05 0.50 77.98 47.33 19.22 29.78 50.00 19.22

0.10 0.05 1.00 77.32 48.48 16.78 27.35 50.00 16.78

0.10 0.05 5.00 76.80 49.66 14.82 25.46 50.00 14.82

0.10 0.05 10.00 76.73 49.83 14.58 25.23 50.00 14.58

0.10 0.05 20.00 76.70 49.91 14.46 25.11 50.00 14.46

0.10 0.10 0.05 97.74 79.27 74.11 84.48 79.27 84.48

0.10 0.10 0.10 87.20 62.27 47.14 58.22 62.27 58.22

0.10 0.10 0.50 78.77 51.64 21.83 32.71 51.64 32.71
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β λ μ S� 1f g S� 2f g E TCU 1f g�
S� 1f g� ��

E TCU 2f g�
S� 2f g� ��

S� E TCU S�ð Þ½ �

0.10 0.10 1.00 77.72 50.74 18.17 28.96 50.74 28.96

0.10 0.10 5.00 76.88 50.13 15.12 25.81 50.13 25.81

0.10 0.10 10.00 76.77 50.07 14.73 25.41 50.07 25.41

0.10 0.10 20.00 76.72 50.03 14.53 25.20 50.03 25.20

0.10 0.50 0.05 109.78 96.77 83.55 88.63 96.77 88.63

0.10 0.50 0.10 93.22 74.87 55.79 62.50 74.87 62.50

0.10 0.50 0.50 79.98 55.54 25.36 34.74 55.54 34.74

0.10 0.50 1.00 78.32 52.83 20.15 30.12 52.83 30.12

0.10 0.50 5.00 77.00 50.58 15.56 26.07 50.58 26.07

0.10 0.50 10.00 76.83 50.29 14.95 25.54 50.29 25.54

0.10 0.50 20.00 76.75 50.15 14.64 25.27 50.15 25.27

0.10 1.00 0.05 110.00 97.00 83.67 88.67 97.00 88.67

0.10 1.00 0.10 93.33 75.04 55.92 62.54 75.04 62.54

0.10 1.00 0.50 80.00 55.60 25.42 34.76 55.60 34.76

0.10 1.00 1.00 78.33 52.86 20.19 30.14 52.86 30.14

0.10 1.00 5.00 77.00 50.58 15.56 26.07 50.58 26.07

0.10 1.00 10.00 76.83 50.29 14.95 25.54 50.29 25.54

0.10 1.00 20.00 76.75 50.15 14.64 25.27 50.15 25.27

0.10 5.00 0.05 110.00 97.00 83.67 88.67 97.00 88.67

0.10 5.00 0.10 93.33 75.04 55.92 62.54 75.04 62.54

0.10 5.00 0.50 80.00 55.60 25.42 34.76 55.60 34.76

0.10 5.00 1.00 78.33 52.86 20.19 30.14 52.86 30.14

0.10 5.00 5.00 77.00 50.58 15.56 26.07 50.58 26.07

0.10 5.00 10.00 76.83 50.29 14.95 25.54 50.29 25.54

0.10 5.00 20.00 76.75 50.15 14.64 25.27 50.15 25.27

0.10 10.00 0.05 110.00 97.00 83.67 88.67 97.00 88.67

0.10 10.00 0.10 93.33 75.04 55.92 62.54 75.04 62.54

0.10 10.00 0.50 80.00 55.60 25.42 34.76 55.60 34.76

0.10 10.00 1.00 78.33 52.86 20.19 30.14 52.86 30.14

0.10 10.00 5.00 77.00 50.58 15.56 26.07 50.58 26.07

0.10 10.00 10.00 76.83 50.29 14.95 25.54 50.29 25.54

0.10 10.00 20.00 76.75 50.15 14.64 25.27 50.15 25.27

Table A4. Optimal base stock level and minimum cost per day for β= 0.00

β λ μ S� 1f g S� 2f g E TCU 1f g�
S� 1f g� ��

E TCU 2f g�
S� 2f g� ��

S� E TCU S�ð Þ½ �

0.00 0.01 0.05 100.00 −64.01 15.99 −9.00 50.00 15.99

0.00 0.01 0.10 100.00 −17.22 8.69 1.26 50.00 8.69

0.00 0.01 0.50 100.00 34.17 1.87 18.52 50.00 1.87

0.00 0.01 1.00 100.00 41.90 0.94 21.62 50.00 0.94

0.00 0.01 5.00 100.00 48.35 0.19 24.30 50.00 0.19
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Table A4. (Continued)

β λ μ S� 1f g S� 2f g E TCU 1f g�
S� 1f g� ��

E TCU 2f g�
S� 2f g� ��

S� E TCU S�ð Þ½ �

0.00 0.01 10.00 100.00 49.17 0.10 24.65 50.00 0.10

0.00 0.01 20.00 100.00 49.59 0.05 24.82 50.00 0.05

0.00 0.05 0.05 100.00 37.30 44.04 57.26 50.00 44.04

0.00 0.05 0.10 100.00 41.70 28.24 45.53 50.00 28.24

0.00 0.05 0.50 100.00 47.80 7.30 30.25 50.00 7.30

0.00 0.05 1.00 100.00 48.85 3.79 27.72 50.00 3.79

0.00 0.05 5.00 100.00 49.76 0.78 25.56 50.00 0.78

0.00 0.05 10.00 100.00 49.88 0.39 25.28 50.00 0.39

0.00 0.05 20.00 100.00 49.94 0.20 25.14 50.00 0.20

0.00 0.10 0.05 100.00 61.04 55.84 66.24 61.04 66.24

0.00 0.10 0.10 100.00 57.50 38.73 53.46 57.50 53.46

0.00 0.10 0.50 100.00 52.11 11.22 33.18 52.11 33.18

0.00 0.10 1.00 100.00 51.11 5.95 29.33 51.11 29.33

0.00 0.10 5.00 100.00 50.23 1.25 25.91 50.23 25.91

0.00 0.10 10.00 100.00 50.12 0.63 25.46 50.12 25.46

0.00 0.10 20.00 100.00 50.06 0.32 25.23 50.06 25.23

0.00 0.50 0.05 100.00 78.54 66.52 70.40 78.54 70.40

0.00 0.50 0.10 100.00 70.10 49.83 57.73 70.10 57.73

0.00 0.50 0.50 100.00 56.00 16.57 35.20 56.00 35.20

0.00 0.50 1.00 100.00 53.20 9.04 30.49 53.20 30.49

0.00 0.50 5.00 100.00 50.68 1.95 26.17 50.68 26.17

0.00 0.50 10.00 100.00 50.34 0.98 25.59 50.34 25.59

0.00 0.50 20.00 100.00 50.17 0.49 25.30 50.17 25.30

0.00 1.00 0.05 100.00 78.77 66.67 70.43 78.77 70.43

0.00 1.00 0.10 100.00 70.27 50.00 57.77 70.27 57.77

0.00 1.00 0.50 100.00 56.06 16.67 35.23 56.06 35.23

0.00 1.00 1.00 100.00 53.23 9.09 30.51 53.23 30.51

0.00 1.00 5.00 100.00 50.68 1.96 26.17 50.68 26.17

0.00 1.00 10.00 100.00 50.34 0.99 25.59 50.34 25.59

0.00 1.00 20.00 100.00 50.17 0.50 25.30 50.17 25.30

0.00 5.00 0.05 100.00 78.77 66.67 70.43 78.77 70.43

0.00 5.00 0.10 100.00 70.27 50.00 57.77 70.27 57.77

0.00 5.00 0.50 100.00 56.06 16.67 35.23 56.06 35.23

0.00 5.00 1.00 100.00 53.23 9.09 30.51 53.23 30.51

0.00 5.00 5.00 100.00 50.68 1.96 26.17 50.68 26.17

0.00 5.00 10.00 100.00 50.34 0.99 25.59 50.34 25.59

0.00 5.00 20.00 100.00 50.17 0.50 25.30 50.17 25.30

0.00 10.00 0.05 100.00 78.77 66.67 70.43 78.77 70.43

0.00 10.00 0.10 100.00 70.27 50.00 57.77 70.27 57.77

0.00 10.00 0.50 100.00 56.06 16.67 35.23 56.06 35.23

0.00 10.00 1.00 100.00 53.23 9.09 30.51 53.23 30.51

0.00 10.00 5.00 100.00 50.68 1.96 26.17 50.68 26.17

0.00 10.00 10.00 100.00 50.34 0.99 25.59 50.34 25.59

0.00 10.00 20.00 100.00 50.17 0.50 25.30 50.17 25.30
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Appendix B.

Figure B1. Optimal base stock
level and minimum cost per
time unit for CH= 0.1.

Figure B2. Optimal base stock
level and minimum cost per
time unit for CH= 1.

Figure B3. Optimal base stock
level and minimum cost per
time unit for CH= 5.
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Figure B4. Optimal base stock
level and minimum cost per
time unit for CH= 10.

Figure B5. Optimal base stock
level and minimum cost per
time unit for CH= 25.

Figure B6. Optimal base stock
level and minimum cost per
time unit for CH= 50.
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