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A B S T R A C T

The current study presents a novel methodology to quantify lead in Turmeric using Raman spectroscopy. In this
study, Partial Least Squares Regression (PLSR) was used for the quantification of lead. For calibration purposes,
different amounts of lead were added to Turmeric samples encompassing a concentration range between 4 and 25
μg g�1. Since lead does not show any Raman band, for the purposes of this study, a complex was formed, its
solvent was evaporated and the complex solid samples were registered with a Raman instrument. Raman mea-
surements were performed in two different modes, -diffuse reflectance and transmission-. The PLSR models
developed from Raman spectra of two data acquisition modes were evaluated in order to determine the suitability
of both acquisition modes for quantifying lead content. The results indicated that diffuse reflectance showed
better performance in terms of accuracy and robustness with a bias of 0.55 μg g�1, a relative standard error of
prediction (RSEP) of 8.5% and a correlation between the predicted and reference values (R2) of 0.967. Despite the
low lead concentration in the samples, the proposed model allows the quantification of the lead content in a fast
and simple way.
1. Introduction

In this article, special emphasis was placed on lead, which is one of
the most common heavy metals produced from human activities. Health
problems caused by exposure to heavy metals are a worldwide concern.
In developing countries, industrial growth and increases in community
population result in high volumes of wastewater and environmental
pollutants [1]. The different sources of this environmental pollutant
include mining, smelting, manufacturing and recycling activities. Lead is
also used in many other products such as pigments, paints, solder, stained
glass, lead crystal glassware, ammunition, ceramic glazes, jewelry, toys
and some cosmetics [1,2]. Heavy metals that contaminate the environ-
ment can enter the human food chain through plants, especially plants
with underground stems that are consumed [1,3]. Heavy metals can
stimulate the production of reactive oxygen species (ROS) and reactive
nitrogen species (RNS) through Fenton’s reaction. ROS and RNS will be
eliminated by the antioxidant defense system. However, the over-
production of ROS and RNS will be beyond antioxidant balancing and
lead to oxidative stress conditions, eventually causing damage to tissues
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and organs [4,5].
Human beings and particularly young children are vulnerable to the

toxic effects of lead and can suffer serious and permanent adverse health
effects. Some of these effects can include the impaired development of
the brain and nervous system. Lead can also cause long-term harm in
adults, including increased risk of high blood pressure and kidney
damage. The exposure of pregnant women to high levels of lead can
cause miscarriages, stillbirth, premature birth and low birth weight [6].

For these reasons, all kinds of products must be assessed in order to
protect human beings from dangerous lead quantities. In Thailand, the
quality of herbal medicine was set for the limit of products containing
heavy metals. Allowed limits of heavy metals in herbal medicinal prod-
ucts are no more than 0.3 μg g�1, 4.0 μg g�1 and 10.0 μg g�1 for cad-
mium, arsenic, and lead, respectively [7]. Standard methods used for
lead quantification are based on atomic absorption spectrometry (AAS)
and inductive coupled plasma (ICP) instruments [8,9]. Although these
instruments can provide accurate and precise results, the cost of analysis
per sample is quite high, and the sample must be submitted for exami-
nation to a laboratory.
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Table 1
Measurement parameters for Transmission and Diffuse reflectance Raman
spectroscopy modes.

Parameter Diffuse reflectance mode Transmission mode

Acquisition time 10 s 30 s
Accumulations 3 3
Objective lens 50x –

Neutral density filters 5% 100%
Confocal hole 1000.03 1000.03
Collection microscope transmission
Range 50-4000 cm�1 50-4000 cm�1
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The modern Raman spectrometer is interesting since it allows non-
destructive analysis [10] and high sample throughput. In addition,
portable Raman instruments can be used on-site in agricultural areas.
Raman spectral data combined with multivariate regression methods
have been reported for the determination of heavy metals in different
kinds of samples [10–12]. Normally, surface-enhanced Raman scattering
(SERS) is often used to enhance the Raman signal of heavy metals
[13–19]. However, commercial SERS materials have been not widely
available. In this study, a Raman spectrometry combined with the partial
least squares regression (PLSR) [20–23] approach was developed for the
determination of lead contents in Turmeric (Curcuma longa Linn.) sam-
ples. Turmeric was selected to study because several countries including
Thailand use it as a medicinal herb and food additive. It is also an
important ingredient in several Asian countries. Moreover, the adulter-
ation of lead chromate to Turmeric is a worldwide food safety concern.
The lead contents in these samples were prepared into simple complex
forms [12] before Raman measurements. The PLSR models developed
using two data acquisition techniques, diffuse reflectance, and trans-
mission, were compared.

2. Materials and methods

2.1. Chemical reagents

Lead standard solution, potassium thiocyanate (analytical grade) and
nitric acid (analytical grade) were purchased from Merck (Germany).
Manganese (II) chloride tetrahydrate was obtained from Sigma-Aldrich
(USA) and made into a 1 g L�1 solution. Potassium thiocyanate was
prepared in deionized water to make a 10 g L�1 solution. 1,10-Phenan-
throline monohydrate was from Loba Chemie (India) and prepared into
3 g L�1 solution with methanol. Sodium hydroxide was purchased from
Carlo Erba reagents (Italy). Whatman filter paper No.1 was used to filter
the complex precipitate.

2.2. Samples preparation

Turmeric powder was used for sample preparation and it was ob-
tained from an organic garden in Srakauw province of Thailand. This
powder was checked for heavy metal contents (Pb, As, Cd) by ICP-OES
before using. The results showed that the contents of heavy metal were
not found in the detection limit of ICP-OES. After checking, this powder
was enrolled and used throughout the study. Lead was added to the
samples in a complex form in order to boost the Raman signal.

Forty-two samples were prepared by adding specific amounts of
turmeric and lead in order to span the concentration between 4 and 25
μg g�1.

The 42 different concentration samples were prepared by accurately
weighing 1 g of turmeric powder. Then 10 mL of 10% HNO3 was used to
extract the sample. The filtrate was filtered and a certain volume of the
standard solution of lead (10 μg mL�1) was added to 5 mL of the filtrate.
Then, the carrier precipitate reagents were added in the following order,
9 mL of manganese chloride (1g⋅L�1), 14 mL of 1,10-Phenanthroline
monohydrate in methanol (3g⋅L�1) and 6 mL of potassium thiocyanate
(10 g L�1). The reaction mixture was mixed and kept for 30 min at room
temperature in order to obtain the precipitated lead complex.

The precipitate was filtered and dried at room temperature for 6 h.
Further compositions information of the 42 samples can be found in
Supplementary data.

2.3. Hardware and software

A Raman spectrometer (Horiba Scientific, Japan) was used
throughout the study. A visible laser of 785 nmwas used as the excitation
source. The optical microscopewas used with a 60 times power objective.
The resolution of the grating was set at 0.5 μm. The Raman instrument
was controlled by LabSpec version 6.4.4.16 software. Multivariate
2

calibration models were constructed using The Unscrambler ® 10.3 from
CAMO Analytics (Trondheim, Norway).

2.4. Reference method

Heavy metal concentrations of each sample used as reference were
measured by inductively coupled plasma-optical emission spectrometer
(ICP-OES) based on AOAC (2016) method 999.10 [8]. Five milliliters of
the filtrate extracted fraction from the sample preparation above was
added to the standard solution to obtain 4–25 μg g�1 of turmeric powder.
The solution was digested with concentrated nitric acid at a temperature
of 150 �C over 2 h. The resulting solution was diluted and mixed with
water to reach a volume of 10 mL. The solutions were analyzed with an
ICP-OES.

2.5. Recording of spectra

The spectra recorded with the Raman spectrometer of Horiba Scien-
tific instrument (Horiba Scientific, Japan) were obtained by two different
acquisition modes, diffuse reflectance, and transmission. The acquisition
parameters for each mode are shown in Table 1.

The lead-complexes were crushed and compressed using a hydraulic
press device with a force of 10,000 pounds for 30 s in order to form a
circular disc.

The samples were then transferred to a Raman instrument for diffuse
reflectance and transmission measurements. The Raman spectra are
generated by a 785 nm (red) wavelength laser with DV (Deviation Angle)
with a diffraction grating of 500 nm. The typical Raman spectrum ob-
tained from diffuse reflectance and transmission modes were illustrated
in Fig. 1.

In addition, the measurement reproducibility of a sample sheet was
approved by 10-times repeat measurements of a sample disc f 10 μg g�1

of lead co-precipitate complex, and acceptable standard deviation values
of these measurements were obtained. It was seen that the good repro-
ducibility was observed for 10 repeat measurements (this can be
observed in a figure added into the supplementary material).

2.6. Construction of models

Several spectral pretreatments were tested for calibration models
calculations. These spectral pretreatments include Savitzky-Golay De-
rivatives (second-order polynomial fitting) with 11 to 21-point window
[24] and the Standard Normal Variate (SNV) [25].

After the spectral pretreatments were applied to the raw data the
samples were evaluated using principal component analysis (PCA). The
samples were divided into calibration and validation set by using the
algorithm of Kennard and Stone [26].

Calibration models were constructed by using the PLSR algorithm and
internally validated by cross-validation (the leave-one-out method). The
optimum number of factors to be included were determined from a plot
of the explained variance against the number of factors. The initial model
thus obtained was refined by selecting different spectral ranges that give
as a result the lowest relative standard error for prediction (RSEP) for the
validation set.



Fig. 1. The typical Raman spectrum obtained from (A) transmission mode and
(B) diffuse reflectance mode.
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The quality of calibration models and its predictive ability is usually
evaluated with the following figures of merit: relative standard error
(RSE) and root mean square error (RMSE), which are designated RSEC
and RMSEC for calibration and RSEP and RMSEP for prediction,
respectively:

RSEð%Þ¼ 100
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where n is the number of samples used, yref is the parameter value pro-
vided by the reference method and ypred is provided by the Raman
spectroscopic method.

3. Results and discussion

In this work, Raman spectroscopy was used for quantifying the lead in
turmeric powder.

The concentrations of lead in turmeric powder samples from different
sources can vary from zero to very high concentrations. This variation
can be caused by several factors. If the turmeric was grown in a lead-
contaminated area, the rhizome of turmeric could be exposed and
absorb the contaminated lead from soil and water. In these situations,
3

high lead concentrations might be found in the turmeric plant.
On the other hand, lead content may be found in very little or zero

amounts in the samples from the non-contaminated area. There was also
another concern. Adulteration of lead chromate into turmeric was an
important problem in several countries, especially USA and Bangladesh.
Lead contents in turmeric samples from Bangladesh were in a range from
several hundred up to 1152 μg g�1 [27–29]. By looking for the normal
lead concentration range in turmeric plants in these articles [27–29], the
concentration range 4–25 μg g�1 of lead was set in our study. This would
be reasonable range and allowed trace analysis of lead content.

3.1. Raman spectra of co-precipitation complex

As it was mentioned in the abstract, since lead does not show any
Raman band for overcoming this problem in this study, a trace amount of
lead was evaluated as a co-precipitated with the carrier precipitate
(manganese-phenanthroline-thiocyanate). In fact, co-precipitation is a
widely used process for separation of trace elements from various types of
samples [30,31]. Co-precipitation requires a carrier precipitate for
collection of trace elements. There are at least four mechanisms involved
in the co-precipitation process, i.e., surface adsorption, occlusion and
inclusion, mixed crystal formation and post precipitation. Among these,
surface adsorption is the major process when co-precipitation occurs
[31]. So, this perhaps is the co-precipitation mechanism of lead with the
carrier manganese-phenanthroline-thiocyanate. This assumption was
supported by the mole ratio of carrier precipitate reagents used in the
experiment condition. Potassium thiocyanate was used much more than
phenanthroline and manganese chloride. When the precipitate was
formed, the excess thiocyanate anions would be adsorbed as the primary
layer on the surface of precipitate. Thus, the ions with opposite charge
including lead could be adsorbed on the surface as the second counter
ions layer to complete charge neutralization. Actually, Raman peaks of
the co-precipitate were contributed from the functional groups of phe-
nanthroline and thiocyanate. Raman spectrum of the carrier
manganese-phenanthroline-thiocyanate complex was changed from the
spectrum of phenanthroline ligand since the new peaks presented a shift
to a few wavenumbers (Fig. 2) [12]. In the presence of lead ions, the
adsorbed ions on the surface of co-precipitate could enhance the polar-
ization of Raman signal [12]. The intensities of Raman peaks at 726 cm�1

and 1452 cm�1 were significantly increased, and this increased in peak
intensity was concentration dependent (see Fig. 3).

The interferences from the matrix of the turmeric sample were also
studied by comparing Raman spectra of the turmeric sample with the co-
precipitate complex of lead standard only and co-precipitate complex of
lead standard spiked turmeric sample. As shown in Fig. 4, the matrix in
the turmeric sample has not interfered with the co-precipitation of lead
and Raman spectrum of co-precipitate of lead spiked turmeric was similar
to Raman spectrum of co-precipitate of lead at 10 μg g�1.

3.2. Modelling strategy

The original data from the diffuse reflectance and transmission modes
were pre-treated by means of SNV for reducing the noise and baseline
drift of the spectra.

After pretreatment of the spectra, different PCA analysis of the SNV
data were performed, and the samples were evaluated for reasonable
sample grouping according to their concentrations. The score plots from
the PCA in Fig. 5 were observed in three groups, however, they did not
show direct grouping relations with the lead concentration from each one
of the samples.

To ensure accurate predictions, a calibration model should encom-
pass all possible variability sources for the body of samples to be deter-
mined. To identify the samples meeting these criteria, we applied the
Kennard-Stone algorithm to the sample sets available. By this method-
ology, 31 of the 42 samples were selected by means of Kennard and Stone
sample selection [26] and used as calibration set samples. The remaining



Fig. 2. (A) Raman spectrum of lead co-precipitation complex, (B) Raman spectrum of co-precipitate complex without lead, (C) Raman spectrum of 1,10-phenanthro-
line and (D) Raman spectrum of KSCN.

Fig. 3. Raman spectra lead co-precipitate complex concentrations (A) 10 μg g�1 and (B) 25 μg g�1.
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11 samples were used as the validation set and used to test the prediction
efficiency of the model.

From the scores of the scatter plot (PC1 vs PC2) obtained from a PCA
of samples for transmission and diffuse reflectance spectra as shown in
Fig. 5, it can be seen that the 11 selected as validation samples encom-
passed the whole spectral variability of those used for calibration. These
selected samples were evaluated to span the whole concentration range
for a homogeneous distribution of concentrations. This process occurred
4

so that the addition of more samples to our calibration sample set for
validation was not necessary.

Then, PLS models were constructed by using the whole spectral range
(50-4000 cm�1). Various treatments (SNV, first and second derivative)
were performed and compared the results. As showed in Table 2 and
Table 3, the optimum model for diffuse reflectance mode was obtained
using SNV pre-treated data, while SNV plus 1st Savitzky-Golay derivative
with 11 points window was the best data treatment method for



Fig. 4. Raman spectra of: (A) co-precipitate complex of lead standard (10 μg⋅g-1), (B) co-precipitate complex of lead standard (10 μg⋅g-1) spiked turmeric sample, (C)
co-precipitate complex without lead spiked turmeric sample and (D) turmeric sample.

Fig. 5. The scores of the scatter plot (PC1 vs PC2) from a PCA of samples for (A) transmission spectra with SNV plus 1st Derivative pretreatment and (B) diffuse
reflectance spectra with SNV pretreatment. The symbol (�) stands for a validation sample and (ᵒ) stands for a calibration sample selected by Kennard &
Stone algorithm.
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transmission mode. The intensities of Raman peaks at 726 cm�1 and
1452 cm�1 were other items for selecting the best spectral range but, the
optimum spectral range was identified by using the jack-knifing criterion
[32], which shows the variables that most strongly influence the per-
formance of a model.

Fig. 6 shows that Jack-Knifing criterion is marking for the diffuse
reflectance PLS model, the range between 50 and 824 cm�1 as the var-
iable range with the most influence to the lead complex quantitation, and
the range that performs better predictive models. Despite there being a
few more marked variables up to 824 cm�1, the models containing this
range do not provide better results.

Application of these criteria provided the ranges listed in Table 4 and
5

Table 5, which coincided with those containing the major bands of the
spectra for the lead complex. The optimum models were employed for
spectral ranges between 50 and 824 cm�1 and 800–1150 plus
1250–1650 cm�1 for the diffuse reflectance mode and the transmission
mode, respectively. Samples that showed a high value of sample
leverage, X or Y variance residuals were considered outliers if the re-
sidual values do not decrease after adding one PLS factor to the plot
variance residuals vs. sample leverage and were excluded from the
calibration models.

The optimum PLSRmodels will have the lowest number of PLS factors
and appropriate model parameters, i.e., bias value, RMSE, and RSE. In
addition, the correlation between the reference values and predicted



Table 2
The merit for calibration and validation sets of Pb-complex by PLS model made with transmission Raman spectra from the full ranges (50-4000 cm�1).

Pretreatments – SNV 1st Derivative 2nd Derivative SNVþ1st
Derivative

SNV þ 2nd Derivative 1st Derivative þ SNV 2ndDerivative þ SNV

Spectral range (cm�1 ( 50–4000

Calibration Samples 31 31 31 31 31 31 31 31
Number of latent factors 2 5 5 2 4 6 4 5
Explained Y variance (%) 78.31 99.55 96.90 78.74 99.14 99.87 98.36 99.70
RMSEC (μg⋅g�1 ( 3.06 0.44 1.16 3.03 0.61 0.23 0.84 0.36
RSEC (%) 20.37 2.93 7.70 20.17 4.05 1.57 5.60 2.40
Validation Samples 11 11 11 11 11 11 11 11
BIAS (μg⋅g�1 ( �2.14 �1.68 �1.75 �1.51 �1.99 �2.28 �2.30 �2.18
RMSEP (μg⋅g�1 ( 4.68 3.17 3.86 3.66 3.16 3.43 3.53 3.45
RSEP % 29.61 20.04 24.43 23.13 20.01 21.71 22.31 21.83
R2 0.630 0.861 0.761 0.761 0.881 0.866 0.861 0.849

Table 3
The merit for calibration and validation sets of Pb-complex by PLS model made with diffuse reflectance Raman spectra from the full ranges (50-4000 cm�1).

Pretreatments – SNV 1st Derivative 2nd Derivative SNVþ1st
Derivative

SNVþ2nd
Derivative

1st Derivative þ SNV 2nd Derivative þ SNV

Spectral range (μg⋅g�1 ( 50–4000

Calibration Samples 31 31 31 31 31 31 31 31
Number of latent factors 4 4 6 5 4 4 4 4
Explained Y variance (%) 94.51 96.34 99.09 99.09 97.48 99.72 97.83 99.73
RMSEC (μg⋅g�1 ( 1.54 1.25 0.63 0.63 1.04 0.34 0.97 0.34
RSEC (%) 10.24 8.37 4.17 4.17 6.94 2.28 6.44 2.29
Validation Samples 11 11 11 11 11 11 11 11
BIAS (μg⋅g�1 ( �0.11 �0.54 �1.53 �0.05 �0.62 �0.64 �0.64 �0.57
RMSEP (μg⋅g�1 ( 1.39 1.34 1.76 2.47 1.61 2.23 1.51 2.31
RSEP % 8.78 8.50 11.11 15.65 10.18 14.08 9.53 14.62
R2 0.959 0.967 0.934 0.880 0.952 0.917 0.960 0.907

Fig. 6. 1st PLS factor loading plot for diffuse reflectance model (range of
50–4000 cm�1), where the application of the Jack-Knifing criterion which
shows the variables that most strongly influence the performance of the model.

Table 4
The merit for calibration and validation sets of Pb-complex by PLS model made
with transmission Raman spectra from various ranges.

Pretreatments SNVþ1st Savitzky-Golay Derivative 11 with points window

Spectral range
(μg⋅g�1 (

800-1150,
1250-1650

700–1650 800–1150 1250–1650

Calibration Samples 31 31 31 31
Number of latent
factors

4 4 5 4

Explained Y variance
(%)

97.98 99.01 97.20 99.08

RMSEC (μg⋅g�1 ( 0.93 0.65 1.09 0.63
RSEC (%) 6.21 4.34 7.32 4.19
Validation Samples 11 11 11 11
BIAS (μg⋅g�1 ( �1.48 �1.82 �2.71 �1.92
RMSEP (μg⋅g�1 ( 2.82 3.00 4.42 3.11
RSEP % 17.83 19.00 27.97 19.69
R2 0.875 0.879 0.745 0.875

Table 5
The merit for calibration and validation sets of Pb-complex by PLS model made
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values (R2) is also an important criterion for consideration.

with diffuse reflectance Raman spectra from various ranges.

Pretreatments SNV

Spectral range (μg⋅g�1 ( 50–824 825–2500 2500–4000 50–4000

Calibration Samples 31 31 31 31
Number of latent factors 4 4 4 4
Explained Y variance (%) 96.81 98.97 99.38 96.34
RMSEC (μg⋅g�1 ( 1.17 0.67 0.51 1.25
RSEC (%) 7.81 4.44 3.44 8.36
Validation Samples 11 11 11 11
BIAS (μg⋅g�1 ( �0.55 �0.42 �0.31 �0.54
RMSEP (μg⋅g�1 ( 1.31 2.07 4.86 1.34
RSEP % 8.28 13.11 30.74 8.50
R2 0.971 0.914 0.491 0.967
3.3. Transmission mode model

For the transmission mode, the best model for lead is the one shown
in Fig. 7(A), which shows the plot predicted calibration value vs. the
reference value. As can be observed in this plot, the model has a slope
close to 1 (0.979), an offset close to 0 (0.116), and an R2 of 0.991, which
are good calibration parameters.

Table 4 shows the most salient calibration parameters for the model,
as well as the calibration and prediction errors obtained. The pretreat-
ment used for this model is SNV and the 1st Savitzky-Golay Derivative
with an 11 points window, and the spectral range is 800–1150, 1250-
1650 cm�1.
6



Fig. 7. Calibration curve (A) and validation curve (B) of predicted Pb values vs. reference by PLS model made with transmission Raman spectra.
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As seen from Table 4, using 4 PLS factors was enough to obtain a
model with the adequate predictive ability for lead; in fact, the resulting
RSEP value was less than 17.83%. Despite the good calibration model,
the prediction error is larger than 10%, which is not good enough for the
medicinal plant industry. The model also has an important bias of �1.48
μg g�1 of lead, and a low value of the correlation coefficient in the pre-
dicted vs. reference plot of 0.881 as is shown in Fig. 7(B), this result
makes it a bad model for lead prediction due to its high prediction errors.
3.4. Diffuse reflectance mode model

For the diffuse reflectance mode, the best model for lead is the model
shown in Fig. 8(A). As seen in this plot, the model has a slope close to 1
(0.968), a low offset (0.430), and an R2 of 0.968, which are good cali-
bration parameters.

Table 5 shows the important calibration parameters for the model, as
well as the calibration and prediction errors obtained. The pretreatment
used for this model is SNV, and the spectral range is 50–824 cm�1. As
seen from Table 5, using 4 PLS factors was enough to obtain a model with
the adequate predictive ability for lead, in fact, the resulting RSEP value
was less than 10% (8.28%).

The prediction error is less than 10%, and together with a small bias
of �0.55 μg g�1 of lead and a high value of correlation coefficient in the
predicted vs. reference plot of 0.971 as is shown in Fig. 8(B), makes this
Fig. 8. Calibration curve (A) and validation curve (B) of predicted Pb values

7

model suitable for the assessment of the quality of turmeric in the me-
dicinal plant industry.
3.5. Models summary

As seen in Figs. 7–8 and Tables 4 and 5, the PLSR model obtained
from the diffuse reflectance and transmission modes expressed a good
correlation coefficient (R2) between the predicted values (Y-axis) and the
actual values (X-axis), with R2 values higher than 0.9. These results
indicated that the predicted lead concentrations in the validation set
strongly agreed with the actual values from the ICP-OES method. How-
ever, the model obtained from the diffuse reflectance mode appears to be
better than that obtained from the transmission mode. This finding was
the result of the lower bias, RMSE and RSE values of the diffuse reflec-
tance model, compared with those of the transmission model.

In this study, the transmission mode was used for discovering local
heterogeneities of the measured samples. Unfortunately, our results
showed that the transmission mode was not appropriate for heavy metal
complexes since it provided very weak Raman spectral signal as is shown
in Fig. 1 (A). For the diffuse reflectance mode, the measurement signal
was obtained from the accumulation of multiple scattered radiations
from the sample surface. The acquired spectral signal appears clearer and
stronger than the signal from the transmission mode, as can be observed
in Fig. 1 (B). Therefore, the PLSR model of the diffuse reflectance spectra
vs reference by PLS model made with diffuse reflectance Raman spectra.
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was much better than the PLSR obtained for the transmission mode for
the quantitative determination of lead content in turmeric powder.

4. Conclusion

The controlled determination of the content of lead ions in turmeric
powder by using PLSR models of Raman spectral data was demonstrated.
In addition, different data acquisition modes, i.e., diffuse reflectance and
transmission, were tested, and the prediction results were compared.
High correlation coefficients between the predicted and reference values
were obtained for both models. Moreover, the best results of our study
showed the diffuse reflectance mode to be the most robust acquisition
mode that provided the best prediction results. Despite the low concen-
tration of Pb (4–25 μg g�1), good results have been obtained, with low
residual values and a low RSEP of 8.28% for the dataset acquired using
the diffuse reflectance mode. A method for quantifying lead content in a
fast and simple way was demonstrated with the obtained results.
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