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Abstract

A 5-axis milling machine has 39 independent geometric error components when the machine tool is considered as a set of five rigid bodies.
The identification of the deterministic component of the systematic error is very important. It permits one to improve the accuracy close to the
repeatability of the machine tool. This paper gives a new way to identify and compensate all the systematic angular errors separately and then use
them further to identify the systematic translational error.

Identification based on a new mathematical method and a stable numerical solution method is proposed. The model explains from first
principles why some error components have no effect in a first order model. The identification of the total angular systematic errors can be
done independently from the translation errors. However, the total translation error depends on the angular errors and the translation errors of each
machine tool slide. The main problems solved are to find enough linear independent equations and avoid numerical instability in the computation.
It is important to separate numerical problems and linear dependence. The very complex equations are first analyzed in symbolic form to eliminate
the linear dependencies. The total of linear independent components in the model is reduced from 30 to 26 for the position dependent errors and
from 9 to 3 for the position independent components. Secondly, the large system of linear equations is broken down in many smaller systems. The
model is tested first with simulated errors modeled as cubic polynomials. An artifact-based identification is proposed and implemented based on
drilling holes in various locations and orientations. New ways to measure the volumetric error directly are proposed. Direct measurement of the
total volumetric error requires considerably less measurement than measuring all 6 components of each machine slide especially in the case of a
5-axis machine.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Machines with three linear axes have a total of 21
linear independent geometric error components [28]. These
components can be identified and compensated for as can be
seen in many research results. However, it should be clear that
for a 3-axis machine these errors can be corrected only for a
single contact point between the tool and workpiece or cutter
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contact (CC) point. The point selected for the correction is
the CL (Cutter Location) point. The CL point is a convenient
reference point on the tool such as the tool tip coordinates. An
error that cannot be eliminated in a 3-axis machine tool is due
to the angular errors in the vector connecting the CC to the
CL point as discussed in [1]. The 5-axis machine gives us the
possibility to compensate for these angular systematic errors
by adjusting the rotational axes. A 5-axis milling machine
has 39 independent geometric error components when the
machine tool is considered as a set of rigid bodies. Each axis
slide considered as a rigid body has 6 errors, one for each
degree of freedom. The errors due to the non-orthogonality

http://www.elsevier.com/locate/cad
mailto:bohez@ait.ac.th
http://dx.doi.org/10.1016/j.cad.2006.11.006


230 E.L.J. Bohez et al. / Computer-Aided Design 39 (2007) 229–244
of the machine coordinate system or squareness errors have 7
independent components. There are two independent rotational
axes position offset errors.

2. Literature review

Bohez [1] analyzed the systematic errors in the 5-axis tool
path generation. An overall model and strategy to compensate
these errors is outlined. It is suggested that identification of the
errors can be done by direct measurement or by using suitable
workpieces or artifacts.

Belforte et al. [2] develop a self-calibration model based
on 18 independent error components for Coordinate Measuring
Machines and 3-axis machine tools. Reduced order Legendre
polynomials are used to model and identify these 18 functions.
A new identification method is outlined. It is assumed that the
parts of the errors that cannot be compensated by the model are
unknown but bounded.

In a series of three papers Kirienda and Ferreira [3–5] model
and identify the quasi-static systematic errors for 3-axis NC
machines. The independent parameters can be modeled as an
n-dimensional polynomial. A first order polynomial model is
shown to contain 17 independent parameters to be identified.
These parameters are identified by measuring the position
of 27 rectangular posts in the machine tool workspace. This
arrangement provides 3 × 27 measurements XY Z . From these
given set of possible points the minimal numbers of points is
determined in such a way as to minimize the coefficient matrix
condition number. The unknown parameters are obtained by
directly inverting the coefficient matrix of the linear system.
The least-squares approach is considered too slow. The best
sample points are found to be on the borders of the rectangular
workspace. These results could also be obtained without
minimizing the condition number as the optimal sampling of
a linear line segment is at the segment limits. The presented
method is however more efficient when second order or higher
polynomials are used to model the errors. Another important
conclusion is that the linear order model seems to be an
adequate model for a real machining center.

Tajbakhsh et al. [6] extend the model of Kirienda and
Ferreira [3–5] by minimizing the L∞ norm for three-axis
machining centers. This norm minimizes the maximum error
instead of minimizing the average square error. This is obtained
by using linear Chebyshev polynomials.

Soons et al. [7] present a general model for multi-axis
machines including 5-axis NC machines. They model the direct
kinematics of the workpiece and tool kinematics chain. The
errors are modeled as piecewise polynomials. They claim to
obtain adequate models for 4 pieces of quadratic polynomials.
It is suggested that piecewise linear functions should also
be sufficient. The unknown parameters are estimated by the
least squares method. They find the best sampling points by
selecting those points out of a fixed regular grid of gauge blocks
that minimize the covariance matrix by an iterative process.
The relation between the number of parameters that can be
estimated with the model and the machine axes is not discussed.
Srivastava et al. [8] model the geometric errors of a
5-axis machine as linear functions and the thermal errors
as exponential variations with time of the parameters of
these linear geometric errors with time. They use the direct
kinematics homogenous matrix transforms. They observe that
the rotational errors are independent of the translational errors.
They also observe that the errors cannot be fully compensated.
One of the rotational errors cannot be compensated with their
model. They claim that this is due to the fact that the machine
has only 5 degrees of freedom. It is also pointed out that this
problem could affect the accuracy of swarf or flank milling in
5-axis mode.

Florussen et al. [9] identify the geometric errors in a
5-axis machining center based on a ball bar based length
measurement. They start by using the reduced 21 independent
parameter model for a 3 linear axis machine. The two rotational
degrees are ignored to simplify the model. They claim that
the error in the orientation can only be fully compensated
with three rotational axes. They further reduce the number
of 21 independent parameters by investigating the correlation
between them. The rotational error components are found to
be highly correlated with the corresponding straightness error
components for the specific 5-axis machine (Maho 700s). These
results are used to justify the removal of the 6 straightness errors
from the 21-parameter model. They further reduce the number
of parameters to 12 by observing that the linear error in the X, Y
and Z directions is strongly correlated with the corresponding
rotational errors. They further investigated the effect of the
order of the polynomials used to model the errors. It is found
that a quadratic or linear polynomial is sufficient for each
error component in the reduced parameter model. The laser
interferometer confirms that the linear and rotational errors are
close to linear polynomials. The merit of above approach is
great simplification of the calibration process. The correlation
between components that are supposed to be linear independent
was not explained.

Lin and Shen [10] propose the matrix summation approach
to simplify the homogenous matrix transform approach. Their
approach is based on a first order model and provides a clearer
physical interpretation.

Ramesh et al. [11,12] analyze the effect of the temperature
of critical building blocks on the machine tool errors. They
point out that even with the same temperature distribution, there
is also a large effect due to different machine tool operating
parameters such as material removal rate, cutting parameters,
wet or dry cutting, etc. The experimental data is classified using
a Bayesian network with a rule based system.

Bagshaw and Newman [13] point out that the total errors
in the workpiece are not only due to the machine inaccuracy
but are also due to the fixture and programming errors. They
develop an expert system that provides for rapid diagnosis and
elimination of errors.

Bjorklund et al. [14] compensate errors that are due to tool
path generation for 5-axis high-speed machining. The errors
considered are mainly servo lag errors which are compensated
by a fuzzy logic expert system active in the postprocessor.
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Wang et al. [15] propose an error compensation model based
on a meshed workspace where the errors are known at the nodes
of the mesh. Once the errors are know for the mesh points the
algorithm interpolates to find the errors in the whole workspace.

Jha and Kumar [16] present a scheme to compensate the
geometric errors and analyze the effect on the accuracy of a
cam profile.

Lei and Hsu [17] develop a probe-ball device that can be
considered as a single side non-extensible double ball bar. The
ball joint is fixed at the end of a standard measuring probe.
Because of the fixed length and single ball joint, the motion
is limited to paths on a sphere. Because of the geometric errors
the probe will measure the small variations in the length that
are then used to find the errors.

Lei and Hsu [18] classify the 5-axis CNC errors in
motional errors due to inaccurate motion servo controls and
link errors due to mounting errors of the machine structural
components. The link errors of the rotary tables are normally
not measurable due to limited accessibility. They use their
direct measurement method developed in [17] combined with
least square identification for the link errors of the rotary axes.
They use the total differentials of direct and inverse kinematics
relation between the workpiece and machine coordinates to
implement real-time error compensations as suggested in
Bohez [1].

Chen et al. [19] develop a new error identification and
accuracy improvement model. They use a meshing concept to
subdivide the workspace into smaller 3D elements. A suitable
interpolation scheme allows them to find the errors at any
location in the workspace.

Mou and Lui [20,21] develop an on-machine inspection
method based on measuring a reference part on the machine
tool to identify and compensate the quasi static error. They
compare quadratic and cubic polynomials for the errors. Better
results are obtained with a cubic model. They also look at the
variation of the errors due to the temperature.

Abbaszadeh-Mir et al. [22] classify the rigid body geometric
errors in two groups. The first group is the position independent
geometric errors also called link errors such as misalignments,
angular offsets and position distance between rotary axes.
The second group is the position dependent geometric error
parameters that vary with the position of the machine slides.
They identifying the total number of position independent
geometric errors as eight. Kinematic considerations give the
formula n = 4r + 2p + 6 = 20 for the total number of position
independent geometric error (r = # rotational axes, p = #
translational axes). However, from these 20 only 8 are linearly
independent. They use the rank, singular value decomposition
and the condition number of the Jacobian to single out these
independent error parameters. They then propose to use a
telescoping magnetic ball bar based algorithm to identify these
8 errors.

Mahbubur et al. [23] improve the positioning accuracy in
5-axis milling by identifying the angular error. They use a
ball bar to identify this error. The results are then used in the
postprocessor by taking these orientation errors into account in
the inverse kinematics.
Tsutsumi and Saito [24] identify the geometric errors related
to the two rotary axes of a 5-axis machine. They consider the
angular deviations of the rotary axes, including the positional
deviations. Specifically they identify 8 deviations. These are the
three angular and three positional errors of the A-axis relative to
the machine coordinate system. The other two deviations are the
angular error and distance errors between the two rotary axes.
They use a ball bar to identify these errors considered constant.

Lee and Ferreira [25,26] introduce a new method based
on triangulation for 2D and tretragonalization for 3D with
linear transducers. They introduce redundant measurements in
the procedure. This redundancy together with the concept of
transistivity allows for the use of inaccurate transducers. This
method is applied to 2 and 3 linear axis machine tools.

Remus and Feng [27] give a generic kinematic model
for 5-axis machine tools applicable to all 5-axis machine
configurations. They illustrate the versatility of the generic
model to evaluate the kinematic performance of the possible
designs of the two rotational joints. The optimal distance and
orientation of the rotational axes is investigated.

Kruth et al. [29] use a ball plate artifact to identify the
21 error components of a 3 linear axis CMM machine. The
3 squareness errors are not modeled but included in the first
degree part of the translational errors. The errors are modeled
as cubic Legendre polynomials. To identify all the coefficients
of the polynomials, 22 overlapping positions parallel to the XY ,
X Z and Y Z planes and 4 positions at an arbitrary position
are needed. They need to use only 10 out of the 16 balls
for each position. The size of the ball plate is limited by
practical considerations and time. A large ball plate requires
fewer measurements but will be more difficult to handle.

From the literature it can be concluded that researchers
reduce the number of parameters without clearly justifying it
based on first principles. The reason to reduce the parameters
is however clear. The more parameters there are the more
numerical problems. This is the same for the degree and type of
the polynomials. The methods used can be classified in direct
measurement on the machine and offline or online measurement
of an artifact or reference part. The direct measurement
methods are today often based on a laser interferometer placed
outside the machine or on the machine table, or a ball bar. The
interferometer has the potential to determine all 39 components
directly in the case of a 5-axis machine tool. However the
rotation errors of the machine slide around the laser beam axis
are difficult to identify. Also it is difficult to identify the error
components for the rotary axes.

Commercial artifact based systems are commonly based on
a ball plate or hole plate and a measuring probe placed in
the machine spindle. A considerable part of the cost of these
systems is due to the black box type software. Most of these are
only for 3-axis machine tools and CMM machine calibration.
Table 1 shows that the researchers that tried to tackle the
problem of error identification in 5-axis machine tools always
made simplifications in the final number of parameters that
were not justified on first principles. The basic reason or method
for reducing the number of parameters is given in the last
column of this table.
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Table 1
Relevant 5-axis machine tool error identification research papers comparison

Paper ref Lin Rot Sqr # Par Method Deg Experiment Parameter reduction

[1] [*] Bohez 17 15 7 39/32 LSQ 3 Sim/holes Linearly dependent, 1st order
[7] Soons 15 15 0 f (typ) LSQ 2 Rectangular grid Cost/until easy to solve
[8] Srivastava 15 15 0 30 Direct 1 Sim Low degree
[9] Florussen 9 3 0 12 LSQ 2 Sim/laser Correlated parameters
[10] Lin 15 15 7 37 na na None Not attempted to solve
[18,17] Lei 34 21 7 61/59/13 LSQ 0 Laser/probe ball Only not measurable errors
[22] Abbaszadeh 21 21 0 42/20/8 Direct 0 Sim/ball bar Matrix rank
[23] Mahbubur 4 4 0 8 Direct 0 Ball bar For 2 rotary axes only
[24] Tsutsumi 5 8 0 8 Direct 0 Ball bar For 2 rotary axes only

Lin: Number of linear error components; Rot: Rotational error components; Sqr: Squareness error components; # Par: Number of independent parameters in the
model (e.g. 61/59/13 means that the model starts with 61 independent parameters that are then further reduced to 59 and finally to 13 for which the model is
solved; f (typ) refers to reduction based on the type of machine and other very machine specific information not clearly justified); Method: Method by which the
linear systems is solved (e.g. LSQ: Least Square Method, direct: direct inversion of coefficient matrix, na: not attempted to solve); Deg: Refers to the degree of the
polynomial used for the identification for the errors that vary with machine slide position; Experiment: Experiments done (e.g. sim: simulation, holes: drilling holes,
laser: laser interferometer); Parameter reduction: Gives the method used by the researcher to reduce the number of parameters.
In the rest of this paper [*] the total number of linear
independent parameters is obtained from first principles as is
discussed in the following sections.

3. Mathematical model

3.1. Degrees of freedom and independent error components

A rigid solid body has 6 degrees of freedom [30]. The
6 coordinates uniquely specify the position of a rigid body
in 3D space. A 5-axis machine has 5 slides that can move
relative to each other. Two other bodies that are fixed to
the machine are the tool and the workpiece. Each body M
has 6 independent errors TM X , TMY , TM Z , RM X , RMY , and
RM Z . In the previous notation T means translational, R means
rotational. The rotational errors are often referred to as pitch,
roll and yaw. The first subscript M stands for the name of the
concerned rigid body. The letter M will take following names:
X , Y , Z , A, B or C representing each machine slide of the 5-
axis machine tool. The second subscript designates the axis of
translation for a T error and the axis of rotation for an R error.

The total number of errors is 6 × 7 = 42 errors due to
the positions of 7 rigid bodies relative to a coordinate system
fixed to the laboratory. These 7 bodies move relative to each
other. There can still be errors due to the position of 7 the
fixed coordinate systems to each rigid body. The number of
independent error components due to these can be found by
connecting these 7 rigid bodies by the minimum number of
rigid bars to form a single rigid body. Three rigid bodies can
be connected by 3 rigid bars in a rigid triangle. Four bodies
require 6 rigid bars (tetrahedron). Seven bodies will require
15 rigid bars. For n bodies the formula 3(n − 2) can be used.
The total of independent error components for 7 rigid bodies is
(42 + 15) = 57. The error components due to the workpiece
and the tool are not considered in the model. These errors
are random in nature in the sense that they are different for
each new set up. However, the above determination of the error
components shows clearly that these errors are there and should
be as small as possible by careful positioning of the tool and
workpiece. These requirements are clearly favoring the tool
Fig. 1. Maho 600E 5-axis machine.

and workpiece offset measurement on the machine through in
process measurement.

In our model only 5 rigid bodies are considered. There will
thus be 30 + 9 = 39 independent errors. The Figs. 1 and
2 shows the 5-axis machine and the corresponding kinematic
link diagram of the same machine that will be considered in
our research. Fig. 1 shows the workpiece coordinate system
O1 with the Cutter Location vector (CL). The motion of the
machine should be such that this CL vector coincides with the
tool. The difference between the CL vector and tool is the total
closed loop volumetric error [1] dX , dY , dZ and di , d j , dk. This
concept is very useful to assess the effect of each individual
error component.

3.2. Reference coordinate system and squareness error

The machine has one position that is defined as the reference
position. Any convenient set can be chosen. One reference
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Fig. 2. Kinematic link diagram of Maho 600E 5-axis machine.

Fig. 3. Squareness errors SY Z , SZ X , SZY , SAY , SAZ , SB X , SB Z and
eccentricity Z AB .

coordinate systems is fixed to the machine frame and to
each body in the kinematic chain. For the reference Cartesian
coordinate systems, all the X -reference axes coincide with the
real X machine axis. So the real X axis has no angular error or
squareness error component. The plane through real X and real
Y axis of the machine tool is selected as reference plane. So the
real Y axis can have only one angular or squareness error SY Z .
The real Z axis will have two squareness errors SZ X and SZY .
These squareness errors are shown in Fig. 3.

The squareness error [28] is due to the error in the direction
of the real axes of the machine. For example the A-axis is not
exactly parallel with the X -axis reference. The A-axis will have
2 squareness errors SAY and SAZ . The same is valid for the
Fig. 4. Offset error rAB ≈ z AB between A and B rotary axes for machine in
Fig. 1.

other rotational axes B or C . The squareness errors of the 5-
axis machine in Fig. 1 will be:
X -axis: none because the real X axis coincides with the
reference X -axis
Y -axis: SY Z

Z -axis: errors SZ X and SZY .
A-axis: SAY and SAZ .
B-axis: SB X and SB Z .

These 7 squareness error are constant angles independent of
the machine slide coordinates, or in other words the position.

3.3. Rigid body errors

When the machine slides move relative to the reference
coordinate system small angular and linear errors will add to
the nominal translations and rotations.

A local reference coordinate system is fixed to each body
and coincides with the reference coordinate system fixed to the
machine frame. Moving the machine slides will give 3 small
translations and 3 small rotations due to the systematic errors.
Only 4 reference coordinate systems need to be considered. The
workpiece reference coordinate system O1 is fixed to the rotary
table A and the workpiece. The reference coordinate system O2
is fixed to the rotary table B. The O3 system is fixed to the Y
slide body. When the machine is in the reference position all
this reference coordinate systems orientations coincide and the
machine controller displays zero for each axis.

The origins O2 and O3 are not at the same location. There
is a distance rAB that gives the position error between the
two rotational axes A and B. This offset is in the plane of
intersection of the real Z -axis and real A-axis. This plane
is unique and contains rAB Therefore rAB has only two
independent components as illustrated in the Fig. 4. Only the
offset in the Z direction Z AB is of first order effect. Fig. 4
also illustrates how the reference position is set. The real Z -axis
corresponds to the centerline of the spindle or tool centerline. It
is possible to make the real A-axis centerline intersect with the
real Z -axis by means of the Y translation. This gives the point
O2. This intersection defines a plane. This plane is intersected
by the centerline of the B rotation in the point O3. Because
of the X translation it is possible to make the real B-axis
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intersect with the real Z -axis. In O2 a reference coordinate
system fixed to the B-body is introduced. In O3 a reference
coordinate system fixed to the Y -body is introduced. Finally
the coordinate system O1 is relocated at O2 to remove the
workpiece offsets from the equations. O4 is relocated at O3.
The tooltip is supposed to coincide with O4. This removes the
tool offsets from our equations. This is a convenient way to
eliminate all redundant offsets between the required coordinate
systems.

3.4. Errors due to misalignment of rotary axis

Due to the squareness error of the rotational axis the first
order model for a rotation A around the A-axis with squareness
errors SAY and SAZ is given by:

X (A) = X + Y SAZ − Z SAY − Y SAZ cos[A]

+ Z SAZ sin[A] + Y SAY sin[A] + Z SAY cos[A]

Y (A) = Y cos[A] − Z sin[A] − X SAZ cos[A]

+ X SAY sin[A] + X SAY

Z(A) = Y sin[A] + Z cos[A] − X SAZ sin[A]

− X SAY cos[A] + X SAZ .

(1)

The above equations are obtained by rotating the point X, Y, Z
over an angle A around the axis A in the coordinate system O2.
Whenever there are products of the SAZ and SAY the terms are
neglected.

The same equations can be derived for a B-axis or C-axis.

3.5. First order model of errors

It is assumed naturally that the tool has been aligned with
the real Z -axis of the machine. Due to the squareness errors and
the Z -axis body there will be errors in the tooltip coordinate as
follows (Z is the translation of the real machine tool Z axis):

The tooltip coordinate after the translation Z relative to the
reference coordinate system O4 will be:

X4t = SZY (Ztip + Z) + RZY (Ztip + Z) + TZ X ;

Y4t = −SZ X (Ztip + Z) − RZ X (Ztip + Z) + TZY ;

Z4t = Ztip + Z + TZ Z ;

(2)

Ztip is the coordinate of the tool tip.
It can already be observed that the component RZ Z has only

second order effect and will not appear in the first order model.
The workpiece will rotate over angles A and B and will

translate a distance X and Y along the real axes of the machine
(see Figs. 1 and 2).

The final position (first order) of the workpiece coordinate
X4w, Y4w and Z4w in the machine reference system O4 will be
given by three equations each consisting of many terms and too
long to write down here. The error in the position will be the
difference between the tool tip coordinates and the workpiece
coordinates. The error terms and the corresponding coefficients
are given in Tables 2–4.

This position errors can also be expressed in the workpiece
coordinate system rigidly fixed to the workpiece by applying
Table 2
The error terms and coefficients of dX in workpiece coordinates

Error component Coefficient

TB X + TX X + TY X − TZ X 1
RB Z + RX Z + RY Z + SB Z − SY Z Y
RAY + RBY + RXY + RY Y − RZY + SAY − SZY Z
SAY −Z cos[A]

SAZ −Y cos[A] cos[B]

SAZ Z sin[A]

TAX cos[B]

RAZ + SAZ − SB Z Y cos[B]

SAY −Y sin[A] cos[B]

TAZ sin[B]

SB X − RAX Y sin[B]

Table 3
The error terms and coefficients of dY in workpiece coordinates

Error component Coefficient

TAY + TBY + TXY + TY Y − TZY 1
RB Z + RX Z + SB Z −X
−RB X − RX X − RY X + RZ X − SB X + SZ X Z
−RAZ − SAZ + SB Z X cos[B]

−RAX + SB X Z cos[B]

SAZ X cos[B] cos[A]

SAY X cos[B] sin[A]

RAX − SB X X sin[B]

−RAZ − SAZ + SB Z Z sin[B]

SAZ Z cos[A] sin[B]

SAY Z sin[B] sin[A]

Table 4
The error terms and coefficients of dZ in workpiece coordinates

Error component Coefficient

TB Z + TX Z + TY Z − TZ Z 1
RAY + RBY + RXY + SAY X
+RB X + RX X + RY X + SB X −Y
TAZ cos[B]

−RAX + SB X Y cos[B]

SAZ X sin[A]

TAX −sin[B]

−RAZ − SAZ + SB Z Y sin[B]

SAY Y sin[A] sin[B]

SAY −X cos[A]

SAZ Y cos[A] sin[B]

the inverse of the rotations B and A to the position errors
dX, dY, dZ .

These errors could be measured for example by a laser
interferometer as a function of different machine translations
X, Y, Z , A and B. If the interferometer is fixed to the
machine frame the equations in Tables 2–4 have to be used.
If the interferometer is fixed to the machine table instead
the equations in Tables 2–4 must first be transformed to
the workpiece coordinate system. This last method is often
not practical for direct measurement with an interferometer.
However if the errors are obtained from a reference workpiece
or artifact the equations in Tables 2–4 must also be transformed
to the workpiece coordinate system.
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Fig. 5. Measurement of zo2o3.

Careful observation of the tables shows that some error terms
have coefficients zero. This means that they have no influence
on the corresponding error. Also it can be observed that there
are rotational errors and squareness errors in the terms. If all
the error terms are equal to zero the relation between the CL
vector X1, Y 1, Z1, i1, j1, k1 in the coordinate system O1 and
the machine motions X, Y, Z , A and B are as follows:

X = −(X1 cos[B] + Xo1o2 cos[B] + Xo2o3 cos[B]

+ Zo2o3 sin[B] + Z1 cos[A] sin[B]

+ Zo1o2 cos[A] sin[B]

+ Y 1 sin[A] sin[B] + Y o1o2 sin[A] sin[B])

Y = −(Y 1 cos[A] + Y o1o2 cos[A]

− Z1 sin[A] − Zo1o2 sin[A])

Z = Zo3o4 − Ztip + Zo2o3 cos[B] + Z1 cos[A] cos[B]

+ Zo1o2 cos[A] cos[B] + Y 1 cos[B] sin[A]

+ Y o1o2 cos[B] sin[A] − X1 sin[B]

− Xo1o2 sin[B] − Xo2o3 sin[B]

i = − sin[B]; j = sin[A] cos[B]; k = cos[A] cos[B].

(3)

The workpiece offsets or the coordinates of O1 in O2,
Xo1o2, Y o1o2, Zo1o2 will be zero because O1 will coincide
with O2. The coordinates of O2 in O3, Xo2o3 = rAB SZY
and Y o2o3 = rAB SZ X , will be second order distances and
Zo2o3 ≈ rAB . This Zo2o3 in the case of our machine
was measured directly and is −0.080 mm. This value can be
measured in a very simple way by putting a reference cylinder
on the centerline of the A-axis with the machine in the reference
position. A dial indicator is placed in the spindle and put on zero
in contact with the cylinder. The B-axis is afterwards rotated
180◦. The dial indicator will now give double the value of
Zo2o3 (see Fig. 5).

The equations given in Tables 2–4 are given below for
reference:

dX = TB X + TX X + TY X − TZ X + RB Z Y + RX Z Y + RY Z Y
+ SB Z Y − SY Z Y + RAY Z + RBY Z RXY Z + RY Y Z
− RZY Z + SAY Z − SZY Z − cos[A](SAY Z
+ SAZ Y cos[B]) + SAZ Z sin[A] + cos[B](TAX
+ (RAZ + SAZ − SB Z )Y − SAY Y sin[A])

+ TAZ sin[B] − RAX Y sin[B] + SB X Y sin[B] (4)
Table 5
Orientation error di in machine coordinates

Error di in machine coordinates Coefficient

RAY + RBY + RXY + RY Y − RZY + SAY − SZY 1
SAY −cos[A]

SAZ sin[A]

Table 6
Orientation error d j in machine coordinates

Error d j in machine coordinates Coefficient

−RB X − RX X − RY X + RZ X − SB X + SZ X 1
SB X − RAX cos[B]

SB Z − RAZ − SAZ sin[B]

SAZ cos[A] sin[B]

SAY sin[A] sin[B]

dY = TAY + TBY + TXY + TY Y − TZY − RB Z X − RX Z X
− SB Z X − RB X Z − RX X Z − RY X Z + RZ X Z − SB X Z
+ SZ X Z + cos[B](−RAZ X − SAZ X + SB Z X − RAX Z
+ SB X Z + SAZ X cos[A] + SAY X sin[A])

+ (RAX X − SB X X − RAZ Z − SAZ Z + SB Z Z
+ SAZ Z cos[A] + SAY Z sin[A]) sin[B] (5)

dZ = TB Z + TX Z + TY Z − TZ Z + RAY X + RBY X
+ RXY X + SAY X − RB X Y − RX X Y − RY X Y − SB X Y
+ (TAZ − RAX Y + SB X Y ) cos[B] + SAZ X sin[A]

− TAX sin[B] − RAZ Y sin[B] − SAZ Y sin[B]

+ SB Z Y sin[B] + SAY Y sin[A] sin[B]

+ cos[A](−SAY X + SAZ Y sin[B]). (6)

3.6. First order model of errors in the orientation

Eq. (3) clearly show that the tool vector components are only
depending on the rotations A and B. This is not only the case
for the 5-axis machine tool here (Fig. 1), it has been observed
by others also [8,18,23] for other machine types.

The tool unit vector components after the translation Z
relative to the reference coordinate system O4 will be (first
order):

i4t = SZY + RZY

j4t = −SZ X − RZ X

k4t = 1.

(7)

The workpiece will rotate over angles A and B and will
translate a distance X and Y along the real axis of the machine.

The final orientation of the cutter location vector i4w, j4w

and k4w in the machine reference system O4 will be given by
three equations each consisting of many terms and too long
to write down here. The error in the orientation will be the
difference between the tool vector i4t , j4t and k4t and the
vector i4w, j4w and k4w. The first order model is obtained by
dropping all higher order terms. The first order error contains
considerably fewer terms and the corresponding coefficients for
each term are given in Tables 5–7. These tables give the errors in
the machine coordinate system O4 fixed to the machine frame.
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Table 7
Orientation error dk in machine coordinates

Error dk in machine coordinates Coefficient
First order error is zero 0

Fig. 6. Effect of SY Z on CL vector orientation.

It can be observed that the error components SY Z , RB Z , RX Z ,
RY Z and RZ Z do not affect the first order angular errors. This is
as expected. An upward slide motion along the real Y -axis will
not introduce an error in the orientation when the workpiece
moves along the real Y -axis as shown in Fig. 6.

All the rotational errors of the X, Y, Z and B-body (RX Z ,
RY Z , RZ Z , RB Z ) around the Z -axis also have no first order
influence. This can also be explained by the fact that the tool
is always along the Z -axis and the difference between the
transformed CL vector orientation is only di and d j . So small
rotations around the Z -axis will have only a second order
effect for the specific machine under consideration (Fig. 1). The
rotation of the A body around the Z -axis however has and effect
that varies with the position (sin B) of the B-axis. When B is
zero in the reference position the effect of RAZ is null. The
effect is maximum when B is 90◦.

The error equations for the rotations have fewer terms
because they are not affected by the translation errors. It is
thus simple to identify these error components first and use the
results later to identify the translational errors.

3.7. Observations concerning mathematical model

The equations giving the relations between the orientation
errors contain only squareness errors and angular errors of the
5 rigid bodies. This means that the identification problem can
be separated into two independent problems. A large part of
the orientation errors can be identified independently by using
the equations in Tables 5–7. Using the system of equations in
the Tables 2–4 can identify the remaining orientation errors and
translational errors.

The errors are approximated as one-dimensional polynomi-
als of the main translation X, Y, Z or rotations A and B. So
Table 8
Maho 600E workspace in machine coordinates

Coordinate Min value Max value

X1 0 mm 300 mm
Y 1 −150 mm +150 mm
Z1 −150 mm +150 mm
I 1 0 +1
J1 −1 +1
K 1 −1 +1

Table 9
Maho 600E 5-axis machine axis range for workspace in Table 8

Translation/rotation Min value Max value

X −124 mm 266 mm
Y −206 mm 187 mm
Z −391 mm 1 mm
A 0◦ 360◦

B −180◦ 0◦

for example RAX = f (A), RAY = f (A), RAZ = f (A) or in
general with our notation RM X = f (M), RMY = f (M) . . ..

The selection of an appropriate degree is often not an easy
problem. The higher the degree the better the approximation.
This can clearly be demonstrated by the expansion of a function
in a Taylor series. However it is well known that in the
numerical computations this can result in badly conditioned
systems of linear equations.

Another problem is the fact that the cumulative systematic
errors are the sum of the components contributed by each rigid
body. So the error in the orientation of the CL vector di , d j and
dk is the sum of a set of polynomials in the machine coordinates
X, Y, Z , A and B. The linear equations obtained to identify the
coefficients of the polynomials must be linear independent. The
error(X) = a0+a1 X +a2 X2

+· · ·+an Xn for different sampled
locations X = X1, X2 . . . will be linear independent equations.
However the equation obtained in the model is the sum of
polynomials in the different machine coordinates as follows.

Error(X, Y, Z , A, B) = a0+a1 X+a2 X2
+· · ·+an Xn

+b0+

b1Y +b2Y 2
+· · ·+bnY n

+· · ·+e0 +e1 B +e2 B2
+· · ·+en Bn .

The ai , bi , . . . , ei , can be any TM N or RM N depending on the
case.

To obtain linear independent equations for different machine
coordinates we must use sets of linear independent machine
coordinates so each of the coordinates sets {X, Y, Z , A, B}

must be linear independent.

4. Solution of the mathematical model

4.1. Workspace of the 5-axis machine tool

It is important to identify the systematic errors in the whole
workspace of the machine tool. In the case considered here
the workspace in the workpiece coordinate system is given in
Table 8. This is based on the size of the machine table.

The corresponding machine translations and rotations X , Y ,
Z , A, B is given in Table 9. The real travel ranges of the Maho
600E machine are as follows:
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Table 10
Scaling of the machine range for polynomials

Scaling function Min Max

X p = (X − Xmin)/(Xmax − Xmin) 0 1
Y p = (Y − Ymin)/(Ymax − Ymin) 0 1
Z p = (Z − Zmin)/(Zmax − Zmin) 0 1
Ap = (A − Amin)/(Amax − Amin) 0 1
Bp = (B − Bmin)/(Bmax − Bmin) 0 1

Fig. 7. Direct measurement with interferometer.

X range = 600 mm, Y range = 450 mm, Z range = 400 mm,
A range 360◦, B range 15◦ to −195◦ (for references as in
Fig. 1). The CNC controller is Phillips 432 5-axis simultaneous.
As can be seen from the Table 9, we cover practically the whole
range of machine slide travel in our model.

The ranges in Table 9 will be used to scale the range of the
independent variables of the polynomial approximation. The
range will be scaled to vary from 0 to 1. The scaling of the
independent variables based on Table 9 gives Table 10.

This scaling reduces the numerical instability (condition
number) of the computation.

4.2. Simulation

4.2.1. Simulated error data
To study the numerical behavior of the model simulated

errors are used. Based on the literature survey it looks
acceptable to use cubic polynomials for the rotational and
translational systematic errors. The squareness errors are
constant small angles. Also the linear position errors were
measured with the interferometer as shown in Fig. 7. The
averaged results for the X, Y and Z axis are shown in Fig. 8.
From these it also looks acceptable to use cubic polynomials.

A cubic polynomial with its maximum, minimum and
inflexion point in the range 0 < X < 1 is (100X3

− 140X2
+

53X − 4). In the simulation this basic polynomial is multiplied
by a scaling factor to obtain small rotational and translational
error components.

For the rotational errors the scaling factor used is 10−4, for
the translational errors 10−3.
Fig. 8. Maho 600E error TX X , TY Y , TZ Z obtained by interferometer.

The absolute values of these simulated errors correspond to
values found in accurate machine tools.

For all the squareness errors (SAX . . . SZY ) in the simulation
the same constant value of 0.00001 rad is used.

All rotational errors in radians will have the form:

RM N (M) = RM N3 M3
+ RM N2 M2

+ RM N1 M + RM N0.

The translational errors in mm will have the form:

TM N (M) = TM N3 M3
+ TM N2 M2

+ TM N1 M + TM N0.

Parameter M has the value ranges given in Table 10. With
these polynomials the simulated errors dX, dY, dZ and di, d j
can be computed with the equations in Tables 2–7.

4.2.2. Identification of the orientation errors
The coefficient matrix of the linear system to identify the

rotational or orientations errors can be obtained from Tables 5–
7. The total number of unknown are the 9 rotational error
components RAY , RBY , RXY , RY Y , RZY , RB X , RX X , RY X ,
RZ X and the 6 squareness errors SAY , SAZ , SZY , SZ X , SB X ,
SB Z . Two independent systems of linear equations, one for di
and one for d j , are obtained. The 8 error components RAY ,
RBY , RXY , RY Y , RZY and SAY , SAZ , SZY only influence the X
component di . This provides the first set of linear equations that
can be solved separately. The 7 error components RB X , RX X ,
RY X , RZ X and SZ X , SB X , SB Z only influence the Y component
d j . This will be the second set of linear equations that can be
solved separately.

The rotational error components are approximated by cubic
polynomials and the straightness errors by constants. So in the
case of the first system of equations there are 23 (5 × 4 + 3)

unknown coefficients; in the case of the second system there are
19 (4 × 4 + 3) unknowns. It should however be clear that it is
not possible to separate the polynomials constant terms RM N0
from SM N . Only the sum of constants (RAY 0 + RBY 0 + RXY 0 +

RY Y 0 − RZY 0 − SZY ), and the constants SAY and SAZ can be
identified from the first linear system.

Only the sum of constants (RB X0 + RX X0 + RY X0 − RZ X0 −

SZ X + SB X ), (SB X − RAX0) and (SB Z − RAZ0 − SAZ ) can be
identified from the second linear system. The total number of
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Table 11
Coefficients identified from di

Coefficient Error component coefficient Error
(%)

1 1 RAY 0 + RBY 0 + RXY 0 + RY Y 0
− RZY 0 − SZY + SAY

−4.9

2 Ap3 RAY 3 0.2
3 Ap2 RAY 2 0.2
4 Ap RAY 1 0.2
5 Bp3 RBY 3 0.09
6 Bp2 RBY 2 0.05
7 Bp RBY 1 −0.01
8 X p3 RXY 3 0.10
9 X p2 RXY 2 0.10

10 X p RXY 1 0.12
11 Y p3 RY Y 3 0.14
12 Y p2 RY Y 2 0.15
13 Y p RY Y 1 0.15
14 Z p3 RZY 3 −0.01
15 Z p2 RZY 2 −0.01
16 Z p RZY 1 −0.01
17 −cos[A] SAY 0.65
18 sin[A] SAZ −0.1

Table 12
Coefficients identified from d j

Coefficient Error component coefficient Error
(%)

1 1 RB X0 − RX X0 − RY X0
+ RZ X0 − SB X + SZ X

0.125

2 Bp3 RB X3 0.3
3 Bp2 RB X2 −0.71
4 Bp RB X1 −3.77
5 X p3 RX X3 −0.1
6 X p2 RX X2 0
7 X p RX X1 0
8 Y p3 RY X3 −0.1
9 Y p2 RY X2 0

10 Y p RY X1 −0.19
11 Z p3 RZ X3 0
12 Z p2 RZ X2 0
13 Z p RZ X1 0
14 cos[B] −RAX0 + SB X −0.4
15 Ap3 RAX3 −0.3
16 Ap2 RAX2 −0.71
17 Ap RAX1 −0.38
18 sin[B] −RAZ0 − SAZ + SB X −3
19 Ap3 sin[B] RAZ3 −0.2
20 Ap2 sin[B] RAZ2 0
21 Ap sin[B] RAZ1 −0.19

unknown is thus reduced to 18 for the first system and 21 for the
second. Solution of these two systems of equation by the least
squares methods gives the results summarized in Tables 11 and
12. The least square approach now finds without any problem
the solution to this reduced linear system.

The condition number for the first system is 1304.85 and for
the second system 71,403.9. The residual error is between 10−8

and 10−9 for both systems or three orders of magnitude smaller
than the values of di and d j , and thus very acceptable.
Table 13
The error terms and coefficients of dX in workpiece coordinates

Error component Coefficient

1 TB X + TX X + TY X − TZ X 1
2 RB Z + RX Z + RY Z + SB Z − SY Z Y
3 TAX cos[B]

4 TAZ sin[B]

The last column in Tables 11 and 12 gives the error between
the estimated value with the first order model and the real
values.

The parameters that influence the orientation errors have
now been identified. At this stage all the error components
that influence the angular errors have been identified for the
simulation. A total of minimum 21 CL vectors is required to
identify the rotational components.

If the linear accuracy of the machine is considered sufficient
there is no more need to compensate the linear errors. The
compensation proposed in Section 5.1 can be applied after
identification. Only implementation of this step could improve
considerably the accuracy of swarf milling of ruled surfaces
where the cutter contact is not a point but a curve [31].

4.2.3. Simulated identification of the translation errors
The linear error can now be identified based on the equations

in Tables 2–4. The orientation errors identified above can be
substituted in these equations thus reducing the size of the
systems of linear equations considerably. This will also give
better numerical stability and smaller condition numbers.

4.2.3.1. Identification of the dX translation errors. Table 13
gives the error terms that affect dX without the known angular
terms.

To find the coefficients of the polynomial approximation
of the error terms, the constant terms and the polynomial
coefficients that are linear dependent must be combined. For
example the coefficient TY X3 Y p3 will be linear dependent with
RY Z2 yp2 Y . So only the sum of the two coefficient can be
computed. Another approach is to vary only a certain number
of machine coordinates X, Y, Z , A, B stepwise. By keeping the
Y and the B machine coordinate zero while randomly changing
the other machine coordinates X, Z , A, a smaller system of
linear equations can be obtained, and no linear dependent
polynomial terms except the constants. The non-zero terms are
given in Table 14 including the estimation error in the value of
the parameter in per cent.

The condition number of the matrix is 238.589. The value
in Table 14 of Y p = 0.33 corresponds to a Y = 0 machine
translation. In the next step the machine coordinate A is
kept zero and the other machine coordinates X, Y, Z and B
are randomly varied in the machine workspace. The set of
coefficients that can now be determined is given in the Table 15.

The condition number is 116,000. The residuals are between
10−4 and 10−5.

The coefficients TAZ3, TAZ2 and TAZ1 must still be
identified. This can be done by keeping X p, Y p, Z p all zero,
Bp = 1 and only varying A. The results are given in Table 16.
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Table 14
Coefficients identified from dX by varying X, Z and A machine coordinates

Coefficient Error component coefficient Error
(%)

1 1 TB X0 + TX X0 + TY X3 Y p3
+ TY X2 Y p2

+ TY X1 Y p + TY X0 − TZ X0

−45.8

2 X p3 TX X3 15.72
3 X p2 TX X2 25.43
4 X p TX X1 40
5 −Z p3 TZ X3 0.59
6 −Z p2 TZ X2 −6.57
7 −Z p TZ X1 −16.1
8 Ap3 cos[B] TAX3 −70.2
9 Ap2 cos[B] TAX2 −56.6

10 Ap cos[B] TAX1 −30.9
11 cos[B] TAX0 80.75

Table 15
Coefficients identified from dX by varying X, Y, Z , B and A = 0

Coefficient Error component coefficient Error
(%)

1 Bp3 TB X3 + Ymin R RB Z3 1.37
2 Bp2 TB X2 + Ymin R RB Z2 −6.63
3 Bp TB X1 + Ymin R RB Z1 −38.6
4 1 TB X0 + TX X0 + TY X0

− TZ X0 + Ymin R(RB Z0
+ RX Z0 + RY Z0 + SY Z )

−19.6

5 Y p4 RY Z3(Ymax R − Ymin R) −3.79
6 Y p3 (RY Z3Ymin R

+ RY Z2(Ymax R − Ymin R)

+ TY X3)

−4.26

7 Y p2 (RY Z2 Ymin R
+ RY Z1(Ymax R − Ymin R)

+ TY X2)

−4.77

8 Y p (RY Z1 Ymin R + TY X1
+ (Ymax R − Ymin R)(RB Z0
+ RX Z0 + RY Z0 + SY Z ))

−16.3

9 (Ymax R − Ymin R)Y pBp3 RB Z3 −1.8
10 (Ymax R − Ymin R)Y pBp2 RB Z2 −2.14
11 (Ymax R − Ymin R)Y pBp RB Z1 −2.26
12 Y X p3 RX Z3 −0.5
13 Y X p2 RX Z2 −0.71
14 Y X p RX Z1 −1.13
15 sin[B] TAZ0 51.0

Table 16
Coefficients identified from dX by varying A only; X p, Y p, Z p are all zero and
Bp = 1

Coefficient Error component coefficient Error
(%)

1 1 TB X3 + Ymin R RB Z3 + TB X2
+ Ymin R RB Z2 + TB X1
+ Ymin R RB Z 1 + TAZ0 + TB X0 + TX X0
+ TY X0 − TZ X0 + Ymin R(RB Z0
+ RX Z0 + RY Z0 + SY Z )

−24.2

2 Ap3 sin[B] TAZ3 28.2
3 Ap2 sin[B] TAZ2 23.6
4 Ap sin[B] TAZ1 31.5

The condition number is 110 and all the residuals are less
then 10−6.
Table 17
The error terms and coefficients of dY in workpiece coordinates

Error component Coefficient

TAY + TBY + TXY + TY Y − TZY 1
RB Z0 + RX Z0 + SB Z −X

Table 18
The error terms and coefficients of dZ in workpiece coordinates

Error component Coefficient

TB Z + TX Z + TY Z − TZ Z 1
RAY 0 + RBY 0 + RXY 0 X

TB X3, TB X2, TB X1 can be solved separately from the
equations in the rows 1, 2, 3 and rows 9, 10, 11 in Table 15.

The individual coefficients TY X3, TY X2, TY X1, RY Z3, RY Z2,
RY Z1 and the sums of constants (RB Z0 + RX Z0 + RY Z0 + SY Z )

and (TB X0 + TX X0 + TY X0 − TZ X0) can be solved separately
from the equations in row 1 in Table 14, and rows 4, 5, 6, 7, 8
in Table 15.

The errors in the estimation of the parameters is given in per
cent in the last column of Tables 14–16. It can be observed that
the estimation errors are larger than the estimation errors in the
case of the orientation errors (Section 4.2.2). This is probably
due to the larger number of parameters and the fact that the
estimated results of the orientation errors are used. Another
reason is that the highest degree terms in the translation errors
are quartic due to the fact that the linear error due to the rotation
errors are multiplied by the length. The more important residual
errors are however very acceptable. Minimum 30 different CL
vectors are needed to identify all the coefficients having an
effect on dX .

4.2.3.2. Identification of the dY and dZ translation errors. All
the terms in the relation dX are now identified. The same must
be done for dY and dZ . Only the terms not identified above
in dX must be identified. Tables 17 and 18 give the error
components that still need to be identified based on dY and dZ
errors. The method to compute these coefficients is exactly the
same as for dX .

An additional 17 CL vectors are required to identify all the
unknown coefficients influencing dY and 14 more for dZ .

5. Compensation

Both the angular and translatory systematic errors can be
compensated by means of an additional very simple step
in the post processor where the G-codes are adjusted with
the corrections dA, dB, dX, dY , and dZ . The CNC control
for the case study machine has for each controlled axis two
compensation tables: one for the linear compensation and one
for the cyclic compensation. For 25 equally spaced points over
the axis range we can enter the compensation values. However
as the total volumetric error at each point in the workspace is
a function of all the axes positions it cannot be used here. The
compensation through software was the only option here.
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5.1. Compensation of the angular errors

Once the systematic error functions coefficients have been
determined they should be used to compensate. The problem
looks quite complex. However if the real values for A and B
will only differ from the reference values Aref and Bref by
small first order differences the total differential of Eq. (3) can
be used. Therefore it is faster to compute the correction of the A
and B angles based on the inverse kinematics relations between
A and B and i, j, k without systematic errors based on the total
differential of both of these relations. For the 5-axis machine
tool considered here the relations are in matrix notation:di

d j
dk

 =

 0 −cos B
cos B cos A −sin B sin A

−sin A cos B −cos A sin B

 [
dA
dB

]
. (8)

The inverse solution of this equation is used to find the
corrections dA and dB.

The correctness of this approach however is not always
valid, as can be observed from the following example.
Consider a nominal CL vector with components X1, Y 1, Z1
any coordinate but i = 1 and j = k = 0. The real CL
vector will contain small errors di, d j and dk. The required
A rotation to compensate these errors will be large and a
first approximation can be computed with A = arctg[d j/dk]

from Eq. (3). This new A rotations will generate new errors
di, d j and dk not correlated with the ones for A = 0.
Also there will be very different values for the corresponding
machine translations, so no convergence for a combination of
machine coordinates can be found. This is a clear proof that to
compensate this case will require an additional rotary C-axis.
Three rotational axes allow to compensate each angular error
di, d j, dk by small rotations dA, dB, dC . The dk and di errors
can be compensated in this case but not the d j . A numerical
example is discussed in Section 6.

5.2. Compensation of the translatory errors

The computation of the compensations for the slide motions
X, Y, Z are obtained by computing the total differential of
Eq. (3) :

dXcor = −Zo2o3 cos[B]dB − Z1 cos[A] cos[B]dB

− cos[B]dX1 − Y 1 cos[B]dB sin[A]

− Y 1 cos[A]dA sin[B] + X1dB sin[B]

− cos[A]dZ1 sin[B] + Z1dA sin[A] sin[B]

− dY 1 sin[A] sin[B];

dY cor = z1 cos[A]dA − cos[A]dY 1
+ Y 1dA sin[A] + dZ1 sin[A];

dZcor = Y 1 cos[A] cos[B]dA − X1 cos[B]dB

+ cos[A] cos[B]dZ1 − Z1 cos[B]dA sin[A]

+ cos[B]dY 1 sin[A] − Zo2o3dB sin[B]

− Z1 cos[A]dB sin[B] − dX1 sin[B]

− Y 1dB sin[A] sin[B].

(9)
Fig. 9. Sample workpiece.

The computed errors dXcor, dY cor, dZcor are added to the
slide motions X, Y, Z . In the case of dA large, as in Section 6,
Eq. (3) must be used to compute the new values of the corrected
machine translations.

6. Implementation and experiments

The model to identify the parameters has now been built
and analyzed based on simulated errors. The results show very
clearly that all relevant coefficients can be identified without
numerical problems, at least for cubic polynomials.

The input to the model is the CL vectors X, Y, Z , i, j, k that
were generated with simulated errors. For example, in Table 15
the polynomial coefficients are identified based on CL points
generated by motion along X, Y, Z and B machine axes while
keeping A rotation zero (see Fig. 9).

The approach that was implemented was drilling holes in a
sample workpiece and measuring the result on a CMM machine
(Figs. 9 and 10). The advantages of this approach are many,
such as:

(i) During drilling only one machine axis moves while all the
other axes are positioned before the drilling starts.

(ii) If the depth of the hole is relatively short compared to the Z
axis travel it is legitimate to assume that the Z body errors
do not vary significantly over the length of the hole.

(iii) The downtime of the machine for the experiments is small.
(iv) Machine deformation can be minimized by slow feed.

The above method can be improved by drilling conical
holes. This does not require that the Z body errors do not vary
significantly over the length of the hole.

The Figs. 9 and 10 show one of the workpieces that were
used to identify the closed loop error and the measurement on
the CMM.

The difference in the location and orientation of the holes
with the nominal position was measured and based on these
values the parameters were identified.

The results were verified by drilling holes of diameter 10 mm
in a square block 200 × 200 × 100 mm. The nominal CL
vectors are given in Table 19. After drilling holes the exact
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Fig. 10. Measurement on CMM machine.

Table 19
Nominal CL vectors in O1

X1 Y 1 Z1 i1 j1 k1

100 −80 80 0.57735 −0.57735 0.57735
100 −80 −80 0.57735 −0.57735 −0.57735
100 80 −80 0.57735 0.57735 −0.57735
100 80 80 0.57735 0.57735 0.57735

Table 20
Measured real position of holes no compensation

X1 Y 1 Z1 i1 j1 k1

100.169 −79.9989 79.82518 0.578441 −0.57753 0.576086
100.1571 −79.823 −80.0169 0.578352 −0.57607 −0.57763
100.1379 80.01842 −79.8447 0.578215 0.57764 −0.5762
100.1549 79.84416 79.99794 0.578338 0.576192 0.577522

Table 21
Measured real position of holes after compensation

X1 Y 1 Z1 i1 j1 k1

100.001 −80.002 80.009 0.577351 −0.57735 0.577353
100.001 −80.001 −80.002 0.577351 −0.57735 −0.57735
100.002 80.006 −80.000 0.577351 0.577351 −0.57735
100.001 80.005 80.004 0.57735 0.577351 0.577353

Table 22
Nominal CL vectors in O1

X1 Y 1 Z1 i1 j1 k1

−150.314 −80 80 1 0 0

locations and orientations were measured on a CMM machine.
The measured results are given in Table 20. The holes drilled
with the compensated G-codes were also measured with the
CMM and Table 21 shows the considerable improvement.
Table 23
Measured real position of holes on CMM without compensation

X1 Y 1 Z1 i1 j1 k1

−150.253 −80.048 80.052 1.00000 −0.00016 −0.00116

Table 24
Measured real position of holes with compensation with Eq. (9)

X1 Y 1 Z1 i1 j1 k1

−150.318 −80.672 80.796 1.00000 −0.000147 0.0000505

Table 25
Measured real position of holes compensation with Eq. (3)

X1 Y 1 Z1 i1 j1 k1

−150.210 −80.078 80.089 1.00000 −0.000304 −0.00009

Table 26
Measured real position of holes with compensation but no d j compensation

X1 Y 1 Z1 i1 j1 k1

−150.313 −80.000 −80.000 1.00000 −0.000160 −0.000001

The largest linear error in the hole position without
compensation was 0.177 mm. With compensation the largest
linear error became 0.009 mm, much closer to the machine
resolution of 0.001 mm. The maximum orientation error was
reduced from 0.058◦ to 0.0002◦ after compensation, lower then
the angular resolution of 0.001◦.

To complete the demonstration an example of partial
compensation is discussed.

A hole is drilled with the CL vector nominally aligned with
the X axis of the machine.

The results of the compensation attempts are given in
Tables 22 and 23.

The required A rotation to compensate the measured d j and
dk is large: 7.86◦.

Drilling the hole with the “compensated” G-code gives no
improvement in the d j component. The results for the X and Y
locations is also completely wrong because Eq. (9) were used
(Tables 24–26).

When the compensated machine rotation A is computed with
Eq. (3), dB with Eq. (8), the new nominal X, Y, Z with Eq. (3)
and the linear corrections corresponding to this new nominal
values with Eq. (9), a new compensated G-code is obtained.
This G-code will compensate X, Y, Z and di , dk but not d j .
To avoid this swapping between the Eq. (3) and the differential
Eqs. (8) and (9) it is faster to keep A zero and compensate the
rest of the nominal G-code with the differentials obtained from
(8) and (9). This leaves d j also uncompensated.

If the d j error is not acceptable, complete compensation can
still be obtained by changing the initial set up in such a way that
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Fig. 11. Direct measurement of volumetric error with reference sleeve, dial indicator and cylinder tree.
none of the CL vectors have an orientation along the X -axis of
the machine. A finite offset angle rotation around the Z axis
would solve the problem by making the j component finite and
not infinitesimal.

The above method can be further improved in accuracy by
drilling the holes first and calibrating the holes on the CMM.
The initial CNC program that was used to drill the holes is
now adjusted based on the calibration results of the holes.
The artifact is put on the machine again and the location is
measured with measuring probe placed in the machine spindle.
This method improves the accuracy but increases the time and
cost.

7. Other compatible data sampling methods

Finally some new sampling methods that are compatible
with the hole drilling approach are given below but were not
implemented, for some of these the practical feasibility has to
be investigated further.

- The real locations (CL points) could be generated by putting
a reference cylinder in the spindle and measuring the real
location relative to a coordinate system fixed to the machine
table (workpiece coordinate system O1 in Fig. 1). This
solution is however difficult to implement for the machine
in Fig. 1. High resolution vision systems in the future could
solve the problem.

- A hollow reference cylinder is placed in the spindle nose
aligned precisely along the machine spindle centerline.
The internal hole is about 1 mm larger than the reference
cylinder diameter which is exactly known. A set of these
reference cylinders is fixed to the machine table and the
X, Y, Z , i, j, k in the workpiece coordinate system are
known with an accuracy an order of magnitude higher then
machine geometric errors. The machine is then programmed
to insert these reference cylinders in the hole. The accurately
positioned dial indicators will then measure directly the total
geometric errors (Fig. 11). For each required sample CL
point a reference cylinder must be fixed to the machine table.
- An auto collimator in the spindle and a mirror array on the
artifact replaces the holes or cylinders on the artifact. This
method could accurately measure dX, dY, dZ and di, d j
values. The image should be obtained through a digital
camera.

- Standard methods [28] and commercially available sys-
tems [32] exist to measure all the 6 error components of each
individual slide for a 3-axis machine tool. The method pro-
posed here only differs from the standard method in that it is
proposed to put the interferometer in the spindle and to mea-
sure dX, dY, dZ and di, dk for a cluster of corner cubes and
twin reflectors at each required CL point. This considerably
reduces the number of measurement as the measurements
are for the whole machine in one set up. A further benefit is
that it is not necessary to measure the dk component. A CNC
program is written to position the corner cubes and twin re-
flectors one by one consecutively in line with the interferom-
eter axis at a constant nominal distance. The interferometer
will measure dX, dY, dZ and di, d j directly.

8. Conclusion

A new method to identify and compensate the systematic
errors in a multi-axis machine tool has been presented. The
mathematical model is based on a first order rigid body model
of the machine tool. The angular errors can be identified
independently of the translatory errors. The errors have been
approximated by cubic polynomials in the monomial basis.
The methodology to avoid numerical problems has been
developed based on careful elimination of linear dependencies
and breaking the large systems of linear equations in smaller
ones. The angular errors are reduced from the theoretical
number of 22 (15RM N + 7SM N ) to only 13 (11RM N and
SAY and SAZ ). The other RM N have no first order effect.
The other SM N are absorbed in the constant term of the
polynomials. The translational errors are reduced from all
39 (15TM N , 15RM N , 7SM N and 2rAB) to only 19 (15TM N ,
RB Z , RX Z , RY Z and Z AB). This is because the components
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identified from the angular errors identification step are known
already. The method has been investigated first with simulated
errors. An implementation based on drilling holes in an artifact
and measure the errors on a CMM machine was proposed.
Finally new ways to measure the volumetric error directly
were outlined. Direct measurement of the total volumetric error
requires considerably less measurement then measuring all the
6 components of each machine slide, especially in case of a 5-
axis machine. The proposed method can be extended to include
the systematic error change due to the thermal and elastic
deformation as variations of the identified error components as
a function of the cutting force and temperature as suggested
in [7,8].
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