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A Comparison of CUSUM, EWMA, and
Temporal Scan Statistics for Detection of
Increases in Poisson Rates
Sung Won Han,a Kwok-Leung Tsui,a Bancha Ariyajunyab
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Various control chart methods have been used in healthcare and public health surveillance to detect increases in the
rates of diseases or their symptoms. Although the observations in many health surveillance applications are often
discrete, few efforts have been made to explore the behavior of detection methods in discrete distributions. Joner
et al. (Statist. Med. 2008; 27:2555–2575) investigated and compared the performance of the scan statistic methods
with the cumulative sum (CUSUM) charts under a Bernoulli distribution. In this paper we compare the performance
of three detection methods: temporal scan statistic, CUSUM, and exponential weighted moving average (EWMA) when
the observations follow the Poisson distribution. A simulation study showed that the Poisson CUSUM and EWMA
charts generally outperformed the Poisson scan statistic methods. In comparisons between CUSUM and EWMA, the
CUSUM charts were superior in dealing with a large shift with a later change in time. However, the EWMA charts
outperformed the CUSUM charts in situations with a small shift and an early change in time. The methods were also
compared with thyroid cancer using a real data set. Copyright © 2009 John Wiley & Sons, Ltd.

Keywords: health surveillance; scan statistic; CUSUM; EWMA; online monitoring; Poisson distribution; temporal surveillance;
conditional expected delay

1. Introduction

The timely detection of increases in the rate of unusual events is an important objective in public health and healthcare
surveillance1--4. The objective of health surveillance, especially syndromic surveillance, is to detect a change in the incidence
of natural outbreaks or bioterrorism and to issue an emergency alarm as soon as possible5--7. Detection of such changes

is based on count data, such as a count of the respiratory diagnoses from civilian office visits, or measurement data such as
emergency department (ED) visits, sales of over-the-counter remedies, and the number of visits to military clinics2. These count
data, observed sequentially, are often assumed to follow a certain discrete distribution such as the Poisson distribution. If an
undesirable event occurs, the rate of the Poisson distribution will change. The popular methods for detecting any such change
include the scan statistic methods in biosurveillance, and the cumulative sum (CUSUM) and exponential weighted moving average
(EWMA) charts in engineering statistical process control (SPC).

Scan statistic methods have been widely used for the detection of change in finite time domains and for detection of offline
changes8--11. When used for online monitoring, scan statistic methods should be modified for the detection of a rate change12.
A comprehensive review of the use of scan statistic methods for online monitoring can be found in Woodall et al.13. When used
in online monitoring, scan statistic methods that use a fixed window size are indeed moving average control charts12.

The CUSUM and EWMA charts are very popular methods in SPC application of manufacturing14. Both types of charts were
devised to increase the capability to detect small process shifts. The theoretical properties of a CUSUM chart were investigated
in Page15, Shiryayev16, Lorden17, Pollak18, and Lai19. In health surveillance, Hill et al.20 and Weatherall and Haskey21 adapted
CUSUM charts mainly for the surveillance of congenital malformations. Brook and Evan22 discussed the CUSUM chart for the
detection of a mean change in the Poisson distribution. Lucas23 studied the run length of the Poisson CUSUM charts. White and
Keats24 used a Markov chain approximation algorithm to find the threshold to use in obtaining the target of in-control average
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run length (i.e. ARL0) that can be defined as the average number of observations needed for the method to detect a change in
the normal state.

The EWMA charts were originally developed for two-sided tests25--29. Robinson and Ho30 examined a one-sided control limit
for a conventional EWMA chart. A discussion and comparison of the existing one-sided EWMA charts can be found in Shu
et al.31. Gan32 introduced a modified version of the EWMA chart to monitor the mean shift of a process away from the Poisson
distribution. Borror et al.33, 34 used the Markov chain approach and simulation to obtain the ARL of the Poisson EWMA chart. Joner
et al.35 used multivariate EWMA (MEWMA) for health surveillance under Poisson count data by proposing one-sided MEWMA.

Classical SPC methods such as CUSUM and EWMA have been applied for prospective health surveillance and studied their
performance in recent periods. Cowling et al.36 proposed an upper CUSUM chart by using a seven-week buffer interval and
compared his proposed method with various time series methods. Jackson et al.37 compared the performance of EMWA, Shewhart
chart, and a general linear model method based on the data set having day-of-the-week effects. Because of the spatiotemporal
characteristics of biosurveillance data, modifications of the multivariate SPC techniques such as MCUSUM and MEWMA have been
suggested by Joner et al.35 and Fricker et al.38 Comprehensive review of the applications of SPC methods to health surveillance
can be found in Woodall1 and Tsui et al. 4.

A number of studies compared the performance of the aforementioned detection methods under continuous baseline
distributions, typically, a normal distribution. Lucas and Saccucci29 and Yashchin39 showed that if a shift size is equal to a standard
deviation, CUSUM performs slightly better than EWMA. Srivastava and Wu40 suggested that EWMA is less efficient than CUSUM
under stationary conditions when ARL0 →∞. The other study revealed that the performance of EWMA is as good as, or slightly
better than that of CUSUM in a two-sided test41. Recently, Joner and Woodall12 compared the scan statistic methods with CUSUM
for Bernoulli observations and concluded that based on a steady-state ARL, Bernoulli-based CUSUM charts performed better than
Bernoulli scan statistic methods.

From a theoretical point of view, Lorden17 proved that when Lorden’s worst average detection delay is used, CUSUM charts
are asymptotically optimal for the one-sided test in all baseline distributions. Moustakides42 proved that the CUSUM method
is exactly optimal when Lorden’s performance measures are used. However, Lorden’s criteria rate the performance of detection
methods in extreme situations that rarely happen. More realistically, consideration of general and reasonable performance such
as the conditional expected delay should be considered. This paper compares the conditional expected delay among the scan
statistics method, CUSUM, and EWMA by evaluating their performance to detect increases in rates under the discrete Poisson
distribution.

The outline of this paper is as follows: Section 2 describes the problem. Section 3 briefly reviews the Poisson version of the
scan statistic, CUSUM, and EWMA methods. In Section 4, we compare the performance of these three detection methods under
various simulation scenarios. Section 5 presents a real application study for the detection of male thyroid cancer data in New
Mexico in the United States. Section 6 presents the concluding remarks and future research directions.

2. Problem formulation

In Poisson count data, we are interested in monitoring and detecting a shift in the rate of occurrences. In some health surveillances,
the shift pattern is transient and has a finite duration, but in this problem formulation, we assume that the pattern is the persistent
jump change in the mean (or rate), which is the classic SPC problem and the theoretical change point detection problem.

Assume that we observe a sequence of independent Poisson random variables over time, {Y1, Y2,. . .}, in which the true mean
of Yi is �i . Under the normal state, �i =�0. After an undesired event occurs at an unknown time �, the values of the �i ’s change
from �0 to �1. In other words, for some �≥1 , Y1,. . . , Y�−1 are Poisson random variables with a mean of �0, whereas Y�, Y�+1,. . .
are Poisson random variables with a mean of �1. The main goal here is to detect an increase in the rate (�) as soon as possible
after an undesirable event occurs. This problem can be formulated based on the following hypothesis testing problem:

H :�i =�0 for all i≥1 (i.e. no change)

against the composite alternative hypothesis

K :�i =
{

�0 if 1≤ i≤�−1

�1 if i≥�
for some unknown �≥1 (i.e. a change)

This hypothesis test (H versus K) is conducted each time based on a sequence of independent Poisson random variables. The
null hypothesis H states that there is no change, which indicates �i =�0 until the most recent time point in monitoring. The
alternative hypothesis K states that a change occurred at an unknown time � and the values of the �i ’s changed from �0 to �1
at that time.

In general, the performance of a detection method u is evaluated by the following two criteria: the false alarm rate during
the time of the in-control state and the detection delay in the out-of-control state. In the in-control state, we want the alarm
time Tu to occupy as much time as possible so that the false alarm rate, measured by 1 / E[Tu|�=∞], is minimized. Here, � is
the time of the onset of change and hence, �=∞ indicates that a change never occurs. Note that a necessary condition for
ARLu

0(=E[Tu|�=∞]) to be finite is that P[T<∞|�=∞]=1. This implies that a false alarm is triggered with a probability of 1 even
without any change.
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In the out-of-control state, the detection delay of method u is Tu −� for (Tu ≥�) in which the conditional constraint guarantees
that Tu generates a true alarm after a change occurs at time �. Because the stopping time Tu is a random variable, we may
consider the conditional expected delay, defined as CEDu(�)=E[Tu −�|Tu ≥�]. In the present paper we use CEDu(�,�1) to compare
the detection methods in Poisson data with different shift sizes of change (i.e. �1) and different time points of changes (�).

It should be noted that CEDu(�,�1) cannot be used for a direct comparison because the exact time that a change in rate occurs
is generally unknown. Several approaches have addressed this issue and proposed various ways to make CEDu(�,�1) applicable
for comparison. The first approach is to consider CEDu(�=1,�1), as the detection delay when a change occurs at time �=114.
The second approach, proposed by Shiryayev16 and Pollak18, uses sup1≤�<∞ CEDu(�,�1). In many cases, sup1≤�<∞ CEDu(�,�1)
often equals to CEDu(�=1,�1). The third approach is to consider lim�−→∞ CEDu(�,�1), which is called the steady-state ARL in the
out-of-control state40.

For comparison of the detection methods in the present study, we primarily use CED(�,�1) for each method. That is, CEDs are
compared by graphical justification at each point in time that a change � occurs. Further, we considered different points of time
for change � in CEDu(�,�1). We focused on comparing three widely used detection methods that are based on scan statistic,
CUSUM, and EWMA, by investigating their behavior on CEDu(�,�1) for different �’s and a certain range of shift sizes �1, subject to

ARLu
0 ≥� (1)

in which � is the lower boundary of the target.

3. Detection methods

3.1. Scan statistics

A scan statistic generates an alarm at time TS, which is the first time n(≥1) such that the scan statistic (Sn) exceeds the threshold
k(≥1). Consequently, Sn is defined by

Sn = max
1≤i≤n

{
i∑

j=i−m+1
Yj

}
(2)

where Yj is the observation at time j, n is the current time point, and m is the fixed window size. k is a prespecified threshold
chosen to satisfy the constraint (1). Conventionally, we assume that Y0 =Y−1 =·· ·=Y−m =0.

The scan statistic Sn has been used extensively in many areas of offline decision problems (for example, Glaz et al.8, 9). However,
the direct use of scan statistics in (2) for online monitoring is inefficient. To efficiently implement this methodology, scan statistics
can be modified as follows:

Sn =max(Sn−1, Mn) (3)

with

Mn =
n∑

j=n−m+1
Yj (4)

Instead of using Sn, we only need to monitor Mn. This modified scan statistic produces an alarm at time TM, which is the first
time n such that Mn =∑n

j=n−m+1 Yj ≥k.

To show that TM is equivalent to TS for k, first note that TS ≤TM because the scan statistic Sn includes the statistic Mn. We
can also show that TM ≤TS as follows: If TS issues an alarm at time n, Sn−1 should be less than k, and Sn should be greater
than or equal to k. Because Sn =max(Sn−1, Mn), Mn is greater than or equal to k, and TM sets off an alarm at time n or earlier,
implying that TM ≤TS. Combining the above statements yields an alarm time of TS = inf{n≥1 : Sn ≥k}, which is equivalent to
TM = inf{n≥1 : Mn ≥k}.

Note that the method Mn =∑n
j=n−m+1 Yj is simply referred to as the scan statistic method in Joner and Woodall12 for Bernoulli

random variables. However, in the SPC literature, the method is known as an unweighted moving average14.

3.2. CUSUM charts

The Poisson CUSUM chart22 triggers an alarm at time TC when the CUSUM statistic Cn exceeds h. Cn(n≥1) can be recursively
calculated by

Cn =max{0, Cn−1 +Yn −r} with r = �∗
1 −�∗

0

ln
�∗

1
�∗

0

(5)
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where �∗
0 and �∗

1 are target in-control and out-of-control parameters, and C0 =0. Lorden17 showed that the CUSUM chart is
asymptotically optimal in detecting a one-sided mean shift according to Lorden’s criteria, which is defined as

Ē1(T)= sup
1≤�≤∞

ess sup
(X1 ,. . . , X�−1)

ET ((T −�+1)+|X1,. . . , X�−1,�, T ≥�)

Furthermore, Moustakides42 showed that the CUSUM chart is exactly optimal according to Lorden’s criteria. However, when criteria
based on CED (i.e sup1≤�≤∞ E[T −�|T ≥�]) is used, it is no longer clear if CUSUM continues to be optimal.

CUSUM can be considered as a scan statistic method with a variable window size for the following reasons. First, the CUSUM
chart can be interpreted from an offline hypothesis testing viewpoint as generalized likelihood ratios in terms of changes in
points of time43. More precisely, in detecting a rate change (from �0 to �1) from the distribution f� for the first n observations
Y1,. . . , Yn, we encounter the problem of testing H : no change occurs versus K : a change occurred and 1≤�≤n. Based on this, the
statistic Wn can be obtained from the following maximum of likelihood ratio with variable time windows:

Wn = max
1≤�≤n

{
n∑

j=�
ln

f�1 (Yj)

f�0 (Yj)

}
(6)

As illustrated in Moustakides42, for h≥0, the alarm time TW = inf{n≥1 : Wn ≥h} is equivalent to the alarm time TW ′ = inf{n≥1 :
W′

n ≥h} with W′
n =max(0, Wn). It is easy to see that

W′
n =max

(
0, W′

n−1 + ln
f�1 (Yn)

f�0 (Yn)

)

and W′
n is equivalent to Cn in (5) for the Poisson count data.

Next, the maximum of likelihood ratio in (6) is equivalent to the scan statistic method derived from the likelihood ratio within
variable time windows. We may define scan statistics with variable window size as

Vn = max
1≤�≤i≤n

{
i∑

j=�
ln

f�1 (Yj)

f�0 (Yj)

}
(7)

which becomes scan statistics with a fixed window size if �= i−m+1. It is easy to see that Vn satisfies

Vn =max(Vn−1, Wn) (8)

For h≥0, the alarm time TV = inf{n≥1 : Vn ≥h} is equivalent to the corresponding alarm times based on Wn or W′
n. Hence, the

CUSUM chart can also be thought of as the scan statistic method with a variable window size for online monitoring44.

3.3. EWMA charts

The EWMA chart for Poisson data, proposed by Borror et al.33, causes an alarm at time TE = first n such that En ≥b. The EWMA
statistic En can be recursively calculated by

En =�Yn +(1−�)En−1 (9)

where 0<�≤1 and E0 =E[Y].
For early detection of a change, Montgomery14 suggests an exact control limit, but we used a constant threshold in this study

because the other two methods also use constant thresholds. We also applied the EWMA to log-likelihood ratios defined by

En =�
f�1 (Yn)

f�0 (Yn)
+(1−�)En−1 (10)

Note that the EWMA statistic of (10) can be simplified to the EWMA of the actual observation if the distribution f (·) belongs to
the exponential family43.

4. Simulation study

A simulation study was conducted to explore the detection ability of the three methods (scan statistics, CUSUM, and EWMA)
for Poisson count data and to compare their performance under various scenarios. Our simulation is motivated by male thyroid
cancer data in New Mexico45.

In our simulation, we set ARL0 as close to 1500 as possible without going below it. In other words, for all the detection
methods, the corresponding parameters were chosen so that the methods generate a false alarm not less than once every 1500
time periods under the baseline incidence rate.

The rate �0 =1.4 is the same baseline rate used for the spatiotemporal application in Sonesson44. Next, we decided to target
shift sizes �∗

1 =1.75, 2.1, 2.45, and 2.8, respectively, 25, 50, 75, and 100% larger than �0. We searched the parameters and thresholds
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for the targeted ARL0 based on 1 600 000 replications. Further, we simulated CED(�,�1) for different changes in points of time
and shift sizes based on 50 000 replicates.

4.1. Parameter selection for target ARL0

To test the scan statistic methods, we obtained a set of parameters (m, k) that yield ARL0 as close to 1500 as possible without
going below it. In the in-control state, if m decreased, ARL0 increased because H0 is hard to reject. The performance of the scan
statistic methods depends on both m and k. Different m and k should be chosen for different shift sizes �1. Here is how we
chose m and k for various specified shift sizes. We first tried to find all the possible combinations of m and k that result in the
target ARL0. Next, for each specified shift size (�1), we selected the combinations of m and k values that minimize ARL1. Table I
displays a set of the parameters for changes in target size �∗

1 and the corresponding ARL0. The values in parentheses next to
ARL0 represent standard errors of run length. Note that the values of m in Table I are the optimal choice of m in terms of ARL1
for a given shift size �1.

For the CUSUM charts, if �∗
1 in the CUSUM formula in (5) is equal to �1, then it yields a small ARL0. First, we found the

smallest threshold h under �∗
1 =�1 for the target ARL0. However, the CUSUM statistic is discrete for Poisson observations. As a

consequence, ARL0 is a step function with respect to h (Appendix A). Table II shows a set of the CUSUM parameters for different
true shift sizes �1 (=�∗

1), h, and the corresponding ARL0.
The parameters for the EWMA charts are the weighting coefficient (�) and the threshold (b). The performance of the EWMA

charts depends on both � and b. The way to select the parameters � and b is similar to the procedure used in the scan statistic
methods. We first tried to find all the possible combinations of � and b that result in ARL0’s, which are close to ARL0’s in CUSUM.
Next, for each specified shift size (�1), we selected a set of � and b values that minimize ARL1. Table III shows a set of the EWMA
parameters for change in target size �∗

1 and the corresponding ARL0’s.

4.2. Comparison of CED(�,�1)s at different points of time for changes � at fixed shift size �1

We first compared the three detection methods by considering different points of time at which change � occurred. To present
the simulation results efficiently, we considered the following finite number of time points: �=1, 2, 3,. . . , 48, 49, 50. Note that most
of CED(�,�1)s converge as early as 50. Figure 1 shows the resulting CED values of scan statistics, CUSUM, and EWMA for changes

Table I. A set of the parameters of the scan statistic method with different
shift sizes given the targeted ARL0 =1500

�1 (�=1) m k ARL0 (s.e.)

1.75 37 72 1535.61 (1.19)
2.1 21 46 1500.57 (1.17)
2.45 14 34 1504.16 (1.18)
2.8 8 23 1519.24 (1.20)
3.15 5 17 1579.68 (1.25)

Table II. A set of the parameters of the CUSUM charts with different shift
sizes given the targeted ARL0 =1500

�1 (�=1) �∗
1 h ARL0 (s.e.)

1.75 1.75 17.15 1547.35 (1.19)
2.10 2.10 11.68 1550.26 (1.21)
2.45 2.45 9.12 1533.51 (1.20)
2.80 2.80 7.8419 1576.68 (1.24)
3.15 3.15 6.7 1538.29 (1.21)

Table III. A set of the parameters in the EWMA charts with different shift
sizes given the targeted ARL0 =1500

�1 (�=1) � b ARL0 (s.e.)

1.75 0.02 1.7038 1547.81 (1.20)
2.10 0.05 1.9651 1551.12 (1.22)
2.45 0.08 2.1720 1533.37 (1.20)
2.80 0.12 2.4155 1576.19 (1.24)
3.15 0.17 2.6792 1538.09 (1.21)
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Figure 1. Comparison of the three detection methods with optimal parameters for given shift size �1 across different points of time for change �. The x-axis
represents time point of rate change (�s) and the y-axis represents CEDu(�,�1)s

at different points in time (�), given four different shift sizes (�1). It can be seen that the values of CED(�,�1) for CUSUM and EWMA
are consistently smaller than those for the scan statistic methods, demonstrating that CUSUM and EWMA are more efficient than
the scan statistic methods at detecting the points at which changes occur.

Furthermore, we generally observed that CUSUM performed slightly better than EWMA for a large shift in size and changes
at later times. However, EWMA performed slightly better than CUSUM for smaller shifts and changes at early points in time.

Each detection method produced the maximum CED when �=1. In scan statistic methods, the CED(�,�1) tends to rapidly
decrease when change occurs at early time points and converges after �≥m because the scan statistics use a fixed window
size m. The values of CED in CUSUM and EWMA do not significantly change over the time change points, implying that they
are more robust than the scan statistic method with respect to the time change points. In addition, EWMA is more robust than
CUSUM with respect to the point time that change occurs.

4.3. Comparison of CED(�,�1)s under different shift sizes

In the previous section, we investigated the performance of the three detection methods when �1 is known. This section contains
the results of our investigation of their performance when �1 is unknown. In practice, if �1 is unknown, one might choose a set
of parameters to detect the targeted shift size �∗

1 and investigate the pattern of CEDs under a different true shift size �1 at a
fixed change in time �=�∗, where �∗ is some constant time point.

When we compare CEDs between the different methods, there may be a scaling issue. In order to address this scaling problem,
we used a scaled version of the CED value that can be computed by dividing the CEDu(�=�∗,�1) in each detection method (u)
by the CED(�=�∗,�1) of the optimal CUSUM (

i.e.
CEDu(�=�∗,�1)

CEDoptimal.CUSUM(�=�∗,�1)

)

Figures 2 and 3 display the scaled CED values of the scan statistic methods, CUSUM, and EWMA, over different values of �1
given �∗ =1 and �∗ =1500, respectively. Both figures showed that CUSUM and EWMA uniformly produced smaller scaled CED
values than the scan statistic methods, implying that CUSUM and EWMA are superior to the scan statistic method for rapid
detection of shifts of various sizes at both early (i.e. �=1) and later (i.e. �=1500) points in time that change occurs.
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Figure 2. Comparison of the three detection methods with optimal parameters for a target shift size �∗
1 (�=1). Sets of parameters for the scan statistics, CUSUM,

and EWMA for a target size �∗
1 and change times �=1 were used. The x-axis represents a true shift size (�1) and the y-axis represents

CED(�=1,�1)

CEDoptimal.CUSUM(�=1,�1)

In comparisons between EWMA and CUSUM, Figures 2 and 3 indicated that EWMA tended to perform better than CUSUM for
a small shift with an early change in time, whereas CUSUM tended to perform better than EWMA for a large shift with a late
change in time.

5. Example: the detection of increased rate in male thyroid cancer data

In addition to the simulation results, we considered how to apply these detection methods in order to assess their practical
applications. Our data set contains the incidence of male thyroid cancer in New Mexico, 1973–2005, which is available through data
from the Surveillance, Epidemiology, and End Results (SEER) Program at the National Cancer Institute (www.seer.cancer.gov/data/ ).
The SEER program collects cancer incidence and mortality from the cancer registries in the United States. Figure 4 plots the
annual incidence of thyroid cancer per 100 000 men.

The main goal of this application is to detect the change in rates as early as possible. It can be seen from Figure 4 that the rate
increases after 1989 or so, and therefore, we assume that there are no shifts between 1973 and 1988. We used this steady-state
period to estimate the baseline rate �0, which is �̂0 ≈2. We tried to detect a 25% increase of �0 to �1, which is the equivalent
of the targeted shift size �∗

1 =2.5.
We determined the parameters of each detection method as we did in the simulation (see Section 4.1). The target ARL0 was

set to 1000. The parameters were �∗
0 =2 and �∗

1 =2.5 for CUSUM, m=37 for scan statistics, and �=0.02 for EWMA. Consequently,
the thresholds of the three methods for target ARL0 are 97 (scan statistics), 16.6 (CUSUM), and 2.33 (EWMA).

Figure 5 shows the statistics over time from the three detection methods. In order to ensure the comparability of the different
methods and use the same threshold, we adjusted the values of the statistics of the scan statistic method and CUSUM by dividing
them by 41.63 and 7.124, respectively.

It can be observed that the scan statistic, EWMA, and CUSUM methods trigger an alarm in 2004, 1999, and 2000, respectively.
Assuming that early detection is desirable, EWMA and CUSUM triggered an alarm faster than the scan statistic method. This is
consistent with our simulation results. Nevertheless, we cannot make any concrete conclusion about which methods perform best

Copyright © 2009 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2010, 26 279--289
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Figure 3. Comparison of the three detection methods with optimal parameters for a target shift size �∗
1 (�=1500). Sets of parameters for the scan statistics,

CUSUM, and EWMA for a target size �∗
1 and change times �=1500 were used. The x-axis represents a true shift size (�1) and the y-axis corresponds to

CED(�=1500,�1)

CEDoptimal.CUSUM(�=1500,�1)

Figure 4. The trend of male thyroid cancer incidence between 1973 and 2005

because this real data set lacks information on when the shift actually occurred. The intention of this case study is to show that
the three detection methods discussed here produce different results, but the overall result is consistent with the comparative
performances determined in the simulation.
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Figure 5. Plots of statistics of the scan statistic method with m=37, the CUSUM chart with �∗
0 =2 and �∗

1 =2.5, the EWMA chart with �=0.02. The circle
indicates the first time point when each method triggers an alarm

6. Conclusions

This paper investigates the properties of the scan statistic methods and CUSUM and EWMA charts when their observations follow
the Poisson distribution and compares the performance of the three methods through simulation and a case study.

The results showed that the CUSUM and EMWA charts outperformed the scan statistic methods in Poisson cases. The simulation
study revealed that the CUSUM and EWMA charts were better than the scan statistic method across all possible points of time
for change and across a composite range of shift sizes �1. Given targeted shift sizes �∗

1(=�1), the CUSUM and EWMA charts
outperformed the scan statistic methods across all the points of time at which they occurred. In addition, given the best methods
for a targeted shift size �∗

1, the CUSUM and EWMA charts were uniformly better than the scan statistic methods over different
true shift sizes �1.

We also compared the CUSUM charts with the EWMA charts and obtained some interesting results from the simulation. The
EWMA charts were slightly better than the CUSUM charts for a small shift size with changes of early points in time, and the
CUSUM charts were better than the EWMA charts in the reverse situation.

There are interesting directions for the future research. The present study was performed with an assumption that the baseline
parameter remains unchanged over time. In reality, however, the parameter under an in-control process often shifts and drifts
over time because of changes in population or seasonal effects. For example, patient emergency room visits by persons with
gastrointestinal symptoms or calls to nurse advice hotline from persons with respiratory symptoms may have seasonal patterns23.
In other cases, the in-control rate depends on factors such as patient characteristics and methodological improvements. These
cases require the application of a risk adjustment method12, 46, 47. Another important issue in health surveillance problems is that
the quality of the baseline data can be readily contaminated by unexplained noise spikes. These noises may adversely affect the
performance of the detection methods. Thus, efficient detection methods that can handle these noises should be developed.

In addition to baseline deviation, we need to study other types of outbreak patterns, especially transient outbreaks. Conventional
detection methods have focused on detection of step shifts in mean. In health surveillance, many types of change can occur.
Tsung and Tsui48 showed that typical detection methods may be inefficient for detecting the special mean shift pattern such as
a shift with finite duration. Shu et al.49 proposed a weighted CUSUM chart in detecting shifts with patterned mean and found
that it is efficient when the mean shift of time series data varies over time.
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Appendix A: obtaining target ARL0 from discrete statistics

We explain why ARL0 =E[T|�=∞] in CUSUM charts is a step function with respect to h. The condition sufficient for the statement is
that if Si is discrete and S(j) is the order statistics of {Si, i=1, 2,. . .}, all T(h) are identical for h∈ (S(j−1), S(j)), where T(h)= infn{n : Sn ≥h}.

Suppose that Sn ≥S(j). Consequently, Sn ≥h, because S(j−1)<h<S(j). Thus,

T(S(j))= inf
n

{n : Sn ≥S(j)}≥T(h)= inf
n

{n : Sn ≥h} for h∈ (S(j−1), S(j)) (A1)

If Sn ≥h, then Sn>S(j−1). Sn is discrete, and S(j−1) and S(j) are adjacent-order statistics. This results in Sn ≥S(j). Thus,

T(S(j))= inf
n

{n : Sn ≥S(j)}≤T(h)= inf
n

{n : Sn ≥h} for h∈ (S(j−1), S(j)) (A2)

By (A1) and (A2), T(h)=T(S(j)) for all h∈ (S(j−1), S(j)). Therefore, T(h) is identical for all h∈ (S(j−1), S(j)).
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