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Abstract 
 
      Dynamic programming (DP) is a mathematical programming approach for optimizing a system that 

changes over time and is a common approach for developing intelligent systems. Expert systems that are 

intelligent must be able to adapt dynamically over time. An optimal DP policy identifies the optimal 

decision dependent on the current state of the system. Hence, the decisions controlling the system can 

intelligently adapt to changing system states. Although DP has existed since Bellman introduced it in 

1957, exact DP policies are only possible for problems with low dimension or under very limiting 

restrictions. Fortunately, advances in computational power have given rise to approximate DP (ADP). 

However, most ADP algorithms are still computationally-intractable for high-dimensional problems. This 

paper specifically considers continuous-state DP problems in which the state variables are multicollinear. 

The issue of multicollinearity is currently ignored in the ADP literature, but in the statistics community it 

is well known that high multicollinearity leads to unstable (high variance) parameter estimates in 

statistical modeling. While not all real world DP applications involve high multicollinearity, it is not 

uncommon for real cases to involve observed state variables that are correlated, such as the air quality 

ozone pollution application studied in this research. Correlation is a common occurrence in observed data, 

including sources in meteorology, energy, finance, manufacturing, health care, etc. 

ADP algorithms for continuous-state DP achieve an approximate solution through discretization of 

the state space and model approximations. Typical state space discretizations involve full-dimensional 

grids or random sampling. The former option requires exponential growth in the number of state points as 

the state space dimension grows, while the latter option is typically inefficient and requires an intractable 

number of state points.  The exception is computationally-tractable ADP methods based on a design and 

analysis of computer experiments (DACE) approach. However, the DACE approach utilizes ideal 

experimental designs that are (nearly) orthogonal, and a multicollinear state space will not be 

appropriately represented by such ideal experimental designs. While one could directly build 

approximations over the multicollinear state space, the issue of unstable model approximations remains 

unaddressed. Our approach for handling multicollinearity employs data mining methods for two purposes: 



 

 

(1) to reduce the dimensionality of a DP problem and (2) to orthogonalize a multicollinear DP state space 

and enable the use of a computationally-efficient DACE-based ADP approach. Our results demonstrate 

the risk of ignoring high multicollinearity, quantified by high variance inflation factors representing 

model instability. Our comparisons using an air quality ozone pollution case study provide guidance on 

combining feature selection and feature extraction to guarantee orthogonality while achieving over 95% 

dimension reduction and good model accuracy. 
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1. Introduction 
 
    Dynamic programming (DP, Bellman 1957) is a common approach for developing intelligent systems 

that must dynamically adapt over time (e.g., White and Sofge 1992, Si et al. 2004).  However, DP 

problems with high dimension are known to be difficult to solve. Exact solutions are only possible for 

small DP problems or under very limiting restrictions (linear dynamics, Gaussian random variables and 

quadratic cost). Approximate DP (ADP) methods now exist (Si et al. 2004), but still encounter issues in 

computational-tractability and approximation quality. In this paper, we focus on finite-horizon stochastic 

DP with multicollinear continuous-state variables. The ADP literature ignores the issues of 

multicollinearity. In some real world applications, multicollinearity can be quite high. We demonstrate 

our methods on an ozone pollution air quality case study from Atlanta, Georgia. The state variables 

consist of concentrations of ozone and its precursor gases that are monitored over multiple time stages 

defined from 4:00 AM through 7:00 PM. The decision variables are the reductions in precursor gas 

emissions at various locations in the defined time stages. The objective is to identify the minimal 

reduction in emissions in each time stage required to maintain the ozone level at or below the required 

standard set by the U.S. Environmental Protection Agency (EPA) throughout the day. For this case study, 



 

 

high multicollinearity exists between the concentrations of ozone that are observed over time and at 

different locations around Atlanta. 

Most continuous-state problems require an ADP algorithm that approximates the continuous optimal 

value function via sampling or discretization of the state space. Chen et al. (1999) introduced a statistical 

perspective of this approximation concept, by recognizing that state space discretization is analogous to 

design of experiments (DOE), and the approximation of the optimal value function is analogous to 

statistical modeling. This is now called a design and analysis of computer experiments (DACE) based 

ADP approach, where the computer experiment is the optimization that occurs in each (time) stage of the 

DP. In ideal DOE, orthogonality is a highly desired property (Chen et al. 2006); therefore, DOE is not 

appropriate for directly representing the state space when the state variables are multicollinear. Another 

issue due to the multicollinearity in a state space is that the collinear variables contain similar information, 

which means there is redundant information. A principal danger of this redundancy is it will result in 

overfitting of the statistical model. In statistics, even though the multicollinearity issue does not decrease 

the predictive power of the model within the fitted sample data set, small changes in the data or the model 

may change the coefficient estimates of the regression model erratically, which indicates the created 

regression model is not robust when applied to new data (Kutner et al. 2004). Therefore, considering 

these, this paper studies data mining (DM) approaches to address multicollinearity in a DP state space. 

DM methods are applied for two reasons: (1) to reduce the state space dimensionality of a DP problem, 

and (2) to orthogonalize a DP state space, so as to enable the use of ideal DOE.  

 

2. Background and contribution 
 
     A finite horizon DP has a finite number of discrete stages, t = 1, …,T. In each stage, there is a cost 

function ct(·), and the objective of stochastic DP is to minimize expected cost E[ct(.)] over the T discrete 

stages and subject to certain constraints, where the expected value is taken over a random vector t that 

represents uncertainty in the system. For a given current stage t, the state variables xt specify the state of 



 

 

the system at the beginning of stage t, and the decision (or control) variables ut specify an action that takes 

place during stage t. The decision variables are chosen to minimize current plus future expected costs. 

The transition of the state variables from the current stage xt to the next stage xt+1 is defined by the state 

transition function ft(.), which depends on the state, decision, and random vectors.  

At the heart of a DP solution policy is the optimal value function Vt(xt). For the stochastic case of DP, 

it is defined for stage t as the minimum expected cost to operate the system from stage t forward to the 

end of the time horizon. Given the state xt of the system at any stage t, the optimal value function can be 

obtained recursively using equation (1), and the optimal policy obtained from solving (1) will be 

employed to control the system at stage t. 

 
 
 
 (1) 
 
 
 
 
 

    All possible values for Vt(xt) can be acquired if there are a finite number of states. However, when the 

state space is continuous, as it is for ozone pollution, it is impossible to get all possible values. Typically, 

an approach for approximating the solution in continuous-state ADP is to first form a finite grid of 

discretization points and then approximate the optimal value function. However, in n-dimensional 

problems, a grid of points with p levels in each dimension requires pn points, yielding exponential growth 

in the number of state points, as the number of state variables increases. This is one form of the “curse of 

dimensionality” which makes DP computationally intractable. More generally, discretization is a form of 

sampling the state space. In a reinforcement learning based ADP approach, sampling is inefficient, 

requiring millions of state points (Busoniu et al. 2010, Geramifard et al. 2013). 

With the statistical perspective of Chen et al. (1999), the sampling of the state space is controlled via 

DOE methods and flexible statistical modeling methods can be employed for value function 

approximation to create a computationally-tractable ADP algorithm. The DACE-based ADP approach is 
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presented in Algorithm 1. In each DP stage t, an experimental design is applied to specify values of the 

state variables. The computer experiment is executed for these designed state values to yield the 

optimized objective, which is the response of the experiment. Then a statistical model is used to fit these 

data in order to approximate the optimal value function. 

 

1. For each stage t: use DOE to sample N points from the state space 
1

N

jt t
x


. 

2. In each stage t = T -1, . . . , 1: 

(a) For each sampled state point xjt, j = 1, . . . ,N, solve the minimization problem (1), where t <T -1,  
the optimal value function 1( )tV   is estimated by 1

ˆ ( )tV   . 

(b) Construct the estimated ˆ ( )tV   via a statistical model using the data from step 2(a). 

 
Algorithm 1: DACE-based ADP algorithm for optimizing a multi-dimensional, T-stage, continuous-state 

problems (Chen et al. 1999) 

 

The focus of this paper is to address the case when the sampled state points yield multicollinearity 

among the state variables. This occurs naturally in applications in which state variables are correlated. 

Issues due to sampling are ignored in the reinforcement learning based ADP approach, including the 

popular Q-learning method, because this approach assumes it is feasible to keep sampling indefinitely 

until “learning” has been sufficiently achieved. By contrast, the DACE-based ADP approach directly 

seeks more efficient sampling via DOE in order to reduce computational effort. However, ideal 

experimental designs are orthogonal or “uniformly space-filling” (Chen et al. 2006) and are inappropriate 

for representing state spaces with multicollinearity. It is possible to transform a space-filling design to 

follow specific probability distributions by using the concept of F-discrepancy (Fang and Wang 1994). 

Cervellera and Macciò (2016) utilized F-discrepancy within a DACE-based ADP algorithm for solving an 

inventory forecasting DP problem. While F-discrepancy could potentially be utilized to generate 

sampling in multicollinear spaces, it will not address the presence of unimportant variables, and the 

multicollinearity will still affect the quality of the statistical model needed to approximate the optimal 

value function. 



 

 

The contribution of this paper is two-fold: (1) employ DM feature selection to identify unimportant or 

redundant features and (2) employ DM feature extraction to directly address the multicollinearity via 

orthogonalization. In real world DP applications, the state transition function ft(.) in equation (1) is also 

unknown, but may be estimated from data. DM feature selection can be employed when building state 

transition models to eliminate unnecessary state variables, so as to enable a lower-dimensional DP state 

space, a smaller experimental design, and reduced computational effort when solving for the optimal 

value function.  DM feature selection for real world DP applications has been previously studied by Yang 

et al. (2007), Yang et al. (2009), Lin et al. (2014), and Shih et al. (2014). DM feature extraction will 

provide the orthogonality needed to apply ideal DOE, so as to generate sampling that will enable better 

statistical models for approximating the optimal value function. This is the first paper to study DM feature 

extraction for ADP. The next section provides a review of the relevant data mining techniques and 

describes how they can be used to reduce the dimension of a DP problem and orthogonalize the state 

space. In Section 4, state transition modeling for the Atlanta ozone pollution case study is conducted with 

a comparison of different DM scenarios. Included are scenarios that employ DM feature selection without 

DM feature extraction for comparison purposes. Finally, concluding remarks are given in the last section. 

 

3. Data mining techniques 
 
     In extremely high-dimensional DP problems with, say, over 100 state variables, directly conducting 

DACE-based ADP would require a large experimental design under the assumption that all these state 

variables are important. However, not all of them are vital in practice, and it is not known in advance 

which ones should be excluded and which ones should be maintained. Hence, DM feature selection 

methods are able to provide important dimension reduction to decrease computation. Figure 1 is an 

example from the Atlanta ozone pollution case study. It is clearly seen that the state variable “ykm3p1” 

has high correlation with the state variable “ykm3p2”, and the state variable “ykm3p2” is very highly 

correlated with “ykm3p3”. These are ozone concentration variables observed at different time points. In 

Figure 2, these four state variables have been transformed from the original multicollinear state space to 



 

 

an orthogonalized space, eliminating the multicollinearity.  An ideal experimental design is not 

appropriate for Figure 1, but is appropriate for Figure 2. 

 
 

 
 

Figure 1. The relationship between state variables in the original multicollinear state space 
 
 
 

 
 

Figure 2. The relationship of state variables in orthogonalized space 
 



 

 

To eliminate multicollinearity and reduce dimensionality, the state space can be orthogonalized by 

using DM tools before implementing a DACE-based ADP algorithm. The DM techniques used in this 

study can be divided into two types, namely feature selection for dimension reduction and feature 

extraction for orthogonalization. Together, these tools can generate an efficient and orthogonal DP state 

space. 

 

3.1.     Feature selection 

      Feature (variable) selection DM techniques are used to reduce the dimensionality of a DP problem by 

identifying a key subset of features. The feature selection techniques used in this study include stepwise 

regression, classification and regression trees (Breimanet al. 1984), and a multiple testing procedure based 

on the false discovery rate (FDR, Benjamini and Hochberg 1995). These techniques were previously 

studied by Shih et al. (2014), who identified that FDR performed well for the Atlanta ozone pollution case 

study from Yang et al. (2007) and Yang et al. (2009). 

3.1.1.     Stepwise regression 

      Stepwise regression is an automatic variable selection procedure that uses forward selection and 

backward elimination processes. In the forward selection process, variables are added one by one to the 

model if they are statistically significant. Of the variables already included in the model, the backward 

process deletes insignificant variables. Forward selection and backward elimination processes are 

repeated until no more variables can be added or deleted. In this study, the significance level threshold for 

a variable to enter or to stay in the model was specified at 0.05. 

3.1.2.     Classification and regression trees 

     Classification and regression trees (CART) developed by Breiman et al. (1984) have become a very 

popular data mining tool for supervised learning. We employ only the regression tree version since our 

variables are continuous. The CART forward algorithm uses binary recursive partitioning to separate the 

variable space into rectangular regions based on the similarity of the response values. In this research, 

regression trees are conducted using CART software from Salford Systems (www.salfordsystems.com). 



 

 

For variable selection, this software provides “variable importance scores.” The variable that receives a 

100 score is the most influential variable for prediction, followed by other variables based on their 

relative importance to the most important variable. However, there are some different options for 

calculating the scores, and selecting the threshold of the scores to identify important variables may be 

subjective. 

3.1.3.     Multiple testing procedure based on the false discovery rate (FDR) 

     Variable selection using FDR typically divides a dataset into c groups based on a categorical response 

variable. For each predictor variable (xi), we test the differences in the c samples, using a t-test or F-test. 

For an n-dimensional problem, a collection of hypothesis tests and the corresponding p-values {݌௜}௜ୀଵ
௡ , 

where pi is the p-value for testing the null hypothesis forvariable xi (where a rejected null hypothesis 

corresponds to a significant variable). In the literature, it is standard to choose a p-value threshold () and 

declare the variable xi is significant if and only if the corresponding p-value has pi. The FDR is defined 

as the “expected proportion of false positives among all the hypotheses rejected” (Benjamini and 

Hochberg 1995). The general FDR-procedure to identify significant variables is shown as follows: 

1. Choose a fixed , where 0  1. 

2. Find ଓ̂ = max [݅: ݌௜ ≤
௜

௠
∙

ఈ

గబ
], where ߨ଴(=  

௠బ

௠
)  denotes the proportion of true Hi. 

3. If ଓ̂ ≥ 1,  =  {All rejected Hi with pi<p(i)} with FDR() . 

If ଓ̂ = 0, do not reject any hypothesis since  = . 

In this study, = 0.05 and  ߨ଴ = 1 are pre-specified. 

 

3.2.     Feature extraction 

     Feature extraction DM techniques create new orthogonal features based on transformations of the 

original features that can supply useful information for modeling (Kim 2009). The new orthogonal 

features are linear combinations of the original features. Feature extraction can be used for both 

orthogonalization and dimension reduction. Principal component analysis (PCA) and partial least squares 



 

 

(PLS) are the feature extraction tools used in this study. Brief descriptions of PCA and PLS are presented 

in the following subsections. 

3.2.1.     Principal component analysis 

     PCA can be regarded as a method to compute a new coordinate system formed by principal 

components (PCs), a.k.a, latent variables or scores, which are orthogonal. Only a small number of the 

most informative PCs are used. In PCA, correlated original variables (X) with p columns (variables) and n 

rows (samples or observations) are transformed to uncorrelated PCs (Z) which are linear combinations of 

X and are defined in equation (2). Each consecutive PC is orthogonally selected in descending order of the 

proportion of explained variation in X. 

                                                                         Z= XE (2) 

    where E= [E1, E2,…, Ep],  Z= [Z1, Z2,…, Zp]. 

    The eigenvectors of the covariance matrix of X are E= [E1, E2,…,Ep], with corresponding ordered 

eigenvalues (λ1>λ2>…>λp), where λi indicates the variance of Zi. Thus, the first PC (Z1) identifies the 

direction of highest variation in the original data X. The second PC (Z2) is orthogonal to the first one, and 

explains the direction of the next highest variation in the data, and so forth. PCA will produce p PCs, if 

the original data X has p dimensions. The PCs illustrate the latent structure of X and can be employed as 

regressors to predict a response in the regression model. 

3.2.2. Partial least squares  

    The model structures of PLS and PCA are very similar. A critical difference between them is that with 

PLS utilizes the response. The new orthogonal variables (PLS components, Z) are chosen to maximize the 

covariance between X (predictors) and Y (responses). PLS can be regarded as a merging of PCA and 

ordinary least squares. The covariance of X and Y merges high variance of X and high correlation with Y. 

The PLS components Z are achieved by exploring a weight vector w which maximizes the covariance 

between the scores of X and Y as shown in equation (3), then regresses Z on X and Y through equations 

(4)-(5), and finally, the prediction model for Y from the original X can be obtained by equation (6). E and 

F are residual matrices, and P and Q are loading matrices. PLS components Z can be acquired from many 



 

 

algorithms, but in this study, Wold’s PLS (Wold et al. 2001) is applied, where each PLS component Z and 

weight w are orthogonal (Zi
TZj=0, wi

Twj=0; i ≠ j). 

Z=Xw (3) 

 X = ZPT + E (4) 

Y = ZQT + F (5) 

                                           ෠ܻ = ZQT = XwQT  =  Xܤ෠  (6) 

                                                    where ܤ෠=  wQT 

    In general, PLS performs better for prediction than PCA since the new orthogonal predictors Z are 

chosen by incorporating information in response Y. In the following section, combinations of DM 

scenarios are employed for the Atlanta ozone pollution case study from Yang et al. (2007). 

 

4. Atlanta ozone pollution case study 

    One of the main reasons for this research is to enable the use of ideal experimental designs for a 

DACE-based DP solution method when the state variables are highly correlated. The Atlanta ground-level 

ozone pollution problem from Yang et al. (2007) is selected as our case study because the ozone state 

variables at different monitoring stations and at different time periods are highly correlated. In addition, 

the air quality computer model used in the Atlanta ozone problem, called the Atlanta Urban Airshed 

Model (UAM), is computationally impractical to implement directly in an ADP algorithm. Therefore, 

more efficient approaches are needed. 

Natural ozone that stays in the upper atmosphere is good for our earth. This stratospheric ozone 

protects the earth from harmful ultraviolet (UV) rays. However, ozone is a harmful pollutant when it is 

generated in the troposphere because ground-level ozone irritates human respiratory systems and damages 

vegetation. Ground-level ozone is not emitted directly, but is formed by the chemical reactions of 

nitrogen oxides (NOx) and volatile organic compounds (VOCs) in sunlight. Hence, ozone concentrations 

fall at night, but rise during the day. Therefore, in order to control ground-level ozone, it is required to 



 

 

control emissions of NOx and VOC. However, Atlanta is “NOx-limited”, which indicates that targeting 

VOC emissions is not effective. Thus, in this case study, only NOx emissions are controlled. To control 

NOx, we must reduce the sources of NOx, which are categorized as point sources and non-point sources. 

Power plants and other heavy industry are considered point sources of NOx emissions, while other 

sources, such as automobiles and small industry, are treated as non-point sources. 

 
 

 
Figure 3. Illustration of the emission sources and the sites for the four Photochemical Assessment 

Monitoring Stations (PAMS) of the Atlanta ozonepollution case study (Yang et al. 2007) 

 
Figure 3 shows a spatial representation of the Atlanta area in the UAM 40 x 40 grid covering a 160 x 

160 kilometer square region of the metropolitan area. Yang et al. (2007) aggregated the 40 x 40 grid into 

a 5 x 5 grid to spatially represent the non-point source emissions for the Atlanta metropolitan area. A total 

of 102 point sources are represented as dots or triangles in Figure 3, where the triangles are those that 

were identified as significant by Yang et al. (2007). Ozone concentrations are monitored by four PAMS 



 

 

sites, located at Conyers, S. Dekalb, Tucker, and Yorkville. Conyers, in the shaded oval, is commonly the 

location of the highest ozone concentrations, and our computational study focuses on modeling ozone 

concentrations for Conyers. 

The objective of the Atlanta ozone pollution DP problem is to minimize the reduction of NOx 

emissions needed to prevent ozone concentrations from exceeding the EPA standard, which was 0.12 

parts per million in this research (and more recently has been decreased, see 

http://www.epa.gov/air/criteria.html). To reduce ozone concentrations, emission controls are applied to 

specific point and non-point sources in differenttime periods covering daytime. Since the chemical 

reaction that generates ozone occurs in the presence of the sun, only time periods from 4:00 AM to 7:00 

PM are considered for reducing emissions. Specifically, five 3-hour time periods are defined: time period 

0 is from 4:00 AM to just before 7:00 AM, time period 1 is from 7:00 AM to just before 10:00 AM, time 

period 2 is from 10:00 AM to just before 1:00 PM, time period 3 is from 1:00 PM to just before 4:00 PM 

and time period 4 is from 4:00 PM to just before 7:00 PM. Time period 0 is an initialization period, and 

DP decisions (emission reductions) are controlled in time periods 1 through 4. 

Using the DP formulation in equation (1), state and decision variables of the Atlanta ozone pollution 

case study can be defined as follows. State variables (xt) at the beginning of time period t include past 

ozone concentrations at the monitoring sites and past NOx emissions at the point sources and non-point 

sources across the 5 x 5 grid over metropolitan Atlanta area (see Figure 3). Decision variables (ut) are the 

reductions in emissions at point and non-point sources to be chosen in DP stage t. The stagewise cost 

function in time period t is denoted by ct (·) and depends on the state xt, the decision ut, and a stochastic 

vector εt that represents uncertainty in the evolution of the state. Please refer to Yang et al. (2009) for 

more details. 

In Yang et al. (2007), the Atlanta UAM model was used as a computer model for generating data on 

the relevant air chemistry. A 500-point Latin Hypercube experimental design was used to select a 

representative sample of point and non-point emission reductions in the different time periods. These 500 

emission control settings were executed in the UAM, and the resulting ozone concentrations were 



 

 

obtained. Given these data, a statistical metamodel is constructed to represent the state transition function 

ft(.) in equation (1). Figure 4 shows their metamodeling process that usesthe emission control settings 

from experimental design and the ozone concentrations from the UAM to construct metamodel surrogates 

of the UAM.  In this paper, we again utilize these data and this general state transition metamodeling 

process, focusing on Conyers ozone concentrations.  The primary difference is that we now handle the 

naturally occurring multicollinearity that exists between the ozone concentrations in the different time 

periods and at the different monitoring sites. 

 

 

Figure 4. Process of developing metamodel (Yang et al. 2007) 

 

4.1.     Data mining scenarios 

    In our evaluation study, 19 DM scenarios were tested, which are shown in Table 1. Most of these start 

with a feature selection method to reduce the dimension of the original problem, such as using stepwise 

regression, FDR, or regression trees. Then orthogonalization is performed using PCA or PLS. For 

example, scenario A-3 uses stepwise regression on the original dataset to select a subset of state variables, 

then utilizes PCA on the selected subset to orthogonalize them, and finally conducts stepwise regression 

again with the respect to the original response on the orthogonal predictors (PCs) to select a final subset 

of PCs that can efficiently represent the state space. However, in Table 1, it is noted that there are two 

versions using FDR to conduct the pre-feature selection: one is FDR with a two-category (binary) 

response and the other is FDR with a continuous response. For FDR with a binary response, we first 

employ the median of the response to split the response values into two groups and then apply the original 



 

 

FDR procedure from Benjamini and Hochberg (1995). For FDR with a continuous response, we first 

apply ordinary least squares to obtain the estimates for all variables; second, t-statistics for the estimates 

are calculated; third, the p-values of all the estimates from t-statistics can be obtained; finally, the original 

FDR procedure from Benjamini and Hochberg (1995) is utilized to select important variables by taking 

advantage of a set of p-values. Finally, note that scenarios A-1, B-1, C-1, and D-1 do not utilize feature 

extraction for orthogonalization; hence, these scenarios represent prior existing approaches for 

comparison purposes. Scenario E-1 utilizes feature extraction only on the ozone concentrations (observed 

at the PAMS sites) since these variables are the primary contributors for high multicollinearity in the 

dataset. 

Table 1. Proposed DM scenarios 

Scenario Pre-Feature Selection Feature Extraction Post-Feature Selection 
A-1 Stepwise Regression None  
A-2 Stepwise Regression PCA  
A-3 Stepwise Regression PCA Stepwise Regression 

A-4 Stepwise Regression PLS  
B-1 FDR w / (2)Categorized Response None  

B-2 FDR w / (2)Categorized Response PCA  
B-3 FDR w / (2)Categorized Response PCA Stepwise Regression 
B-4 FDR w / (2)Categorized Response PLS  

C-1 FDR w / Continuous Response None  
C-2 FDR w / Continuous Response PCA  
C-3 FDR w / Continuous Response PCA Stepwise Regression 

C-4 FDR w / Continuous Response PLS  
D-1 Regression Tree None  
D-2 Regression Tree PCA  

D-3 Regression Tree PCA Stepwise Regression 
D-4 Regression Tree PLS  

E-1 - PAMS sites – PCA Stepwise Regression 
E-2 - PCA Stepwise Regression 
F - PLS  
 

4.2.     Evaluating the metamodel 

     Each DM scenario in Table 1 was evaluated on the Atlanta ozone pollution data described for Figure 4 

(500-Latin Hypercube design points with ozone concentrations from the UAM) to predict ozone 

concentrations at the Conyers monitoring site (shaded in Figure 3) for time stages 1 through 4. For each 



 

 

time stage, the number of predictors is specified in Table 2. This set of predictors from Yang et al. (2007) 

following a mining phase in which they identified only 15 of the original 102 point sources as being 

significant (identified as triangles in Figure 3). Consequently, the 5 x 5 grid of 25 non-point sources plus 

the 15 point sources constitute 40 decision variables for emission control. Since the state space maintains 

past information on ozone concentrations at 4 monitoring sites and NOx emissions at 40 sources, each 

time period generates 44 state variables. For example, the state variables entering time stage 4 consist of 

ozone concentrations and NOx emissions from time periods 0, 1, 2, and 3 to yield 176 state variables. 

 

Table 2. Number of predictors for the Atlanta ozone problem 

 
State Space (xt) (Past 

Ozone & NOx) 
Decision Space (ut) 

(NOx emission) 
Total # Predictors 

Stage-1 44 (40 + 4) 40 (5 x 5 + 15) 84 

Stage-2   88 (44 x 2) 40 128 

Stage-3 132 (44 x 3) 40 172 

Stage-4 176 (44 x 4) 40 216 

 

    Each DM scenario was evaluated using following performance measures:  

(1) Model R2, which measures how well the model fits to the data. 

(2) Number of variables left in the model, which represents the ability to reduce dimension. 

(3) Variance Inflation Factor (VIF), which indicates the level of instability in the parameter 

estimates due to multicollinearity.  Note: Feature extraction yields the ideal VIF of 1.0. 

(4) Prediction error percentage (%Error) calculated using 10-fold cross-validation, which 

measures model prediction accuracy. 

    Evaluation results are presented in the following sections by time stage. 

4.2.1.     Results for the Conyers metamodel in stage 1 

    The results of the 19 DM scenarios for the Conyers metamodel in stage 1 are shown in Table 3. In this 

table and Tables 4-6, we highlight the best results in boldface for each measure. From Table 3, for all 

scenarios, the metamodel of Conyers at stage 1 has low R2, which indicates a high level of uncertainty 



 

 

(unexplained variability) in this time stage of the ozone pollution system. It is interesting to note that 

while scenarios A-1, B-1, C-1, and D-1 do not use feature extraction, the VIFs are close to the ideal value 

of 1.0. This is achievable in presence of multicollinearity when the highly collinear variable combinations 

are excluded as a consequence of a DM feature selection method. For dimension reduction, from 84 

variables, modeling with PLS or continuous-response FDR requires only one (latent) variable. For model 

accuracy, it can be seen that stepwise regression yields the smallest prediction error percentages and 

higher R2, regardless of DM feature extraction. It is interesting to note that scenarios E-1 and E-2, while 

similar in concept, yield different results. Comparing these two scenarios, it appears that applying PCA 

only on the PAMS ozone concentrations performs better than applying PCA on the all the variables. 

Overall, the combination of Stepwise-PLS (scenario A-4) achieves the best of both dimension reduction 

and model accuracy, while also guaranteeing an orthogonal state space. 

 

Table 3. Results of the DM scenarios for the Conyers metamodel in stage 1 

Scenario R2 Vars. left in model VIF %Error 
A-1 Stepwise 0.2646 7 (1.0006–1.0137) 1.08925 
A-2 Stepwise-PCA 0.2646 7 1 1.08925 
A-3 Stepwise-PCA-Stepwise 0.2597 4 1 1.09229 
A-4 Stepwise-PLS 0.2636 1 1 1.08741 
B-1 FDR 0.2219 3 (1.003–1.008) 1.10580 
B-2 FDR-PCA 0.2219 3 1 1.10580 
B-3 FDR-PCA-Stepwise 0.2208 2 1 1.10352 

B-4 FDR-PLS 0.2205 1 1 1.10384 
C-1 conFDR 0.1894 1 1 1.13779 
C-2 conFDR-PCA 0.1894 1 1 1.13779 

C-3 conFDR-PCA-Stepwise 0.1894 1 1 1.13779 
C-4 conFDR-PLS 0.1894 1 1 1.13779 

D-1 Tree 0.1937 2 1.0006 1.13840 
D-2 Tree-PCA 0.1937 2 1 1.13840 
D-3 Tree-PCA-Stepwise 0.1937 2 1 1.13840 

D-4 Tree-PLS 0.1936 1 1 1.13890 
E-1 PAMSsites-PCA-Stepwise 0.2476 7 (1.002–1.014) 1.08925 
E-2 PCA-Stepwise 0.2646 20 1 1.15553 

F PLS 0.3048 1 1 1.18912 

 

 



 

 

 

4.2.2.     Results for the Conyers metamodel in stage 2 

    To construct the Conyers metamodel in stage 2, the variables from stage 1 are also included in the state 

space, for a total of 128 predictor variables. The results are shown in Table 4. The addition of these 

variables enables a much higher R2 that is close to 1.0 for all scenarios, and the prediction error 

percentage also drops compared to stage 1. For the scenarios without feature extraction (A-1, B-1, C-1, 

and D-1), their VIFs are fairly close to the ideal value of 1.0, but higher than in stage 1. With more 

variables, we can now see more differences in the dimension reduction results, where the worst scenarios 

are E-1, E-2, F, and stepwise regression scenarios A-1, A-2, and A-3. This result indicates that conducting 

feature selection with FDR or trees prior to feature extraction is helpful for dimension reduction. In 

particular, PLS alone (scenario F) does not eliminate as many variables as PLS combined with any of the 

feature selection methods. Overall, as in stage 1, PLS is again very successful for dimension reduction, 

requiring as few as one or 3 latent variables. FDR is also successful again, but for stage 2, the binary-

response FDR (scenarios B-1 to B-4) is better while the continuous-response FDR (scenarios C-1 to C-4) 

was better for stage 1. For model accuracy, similar to stage 1, stepwise regression scenarios A-1 through 

A-4 and E-1 have the smallest prediction accuracy percentages and highest R2 values. Finally, as in stage 

1, Stepwise-PLS (scenario A-4) is the best overall choice. 

 

Table 4.Results of the DM scenarios for the Conyers metamodel in stage 2 

Scenario R2 Vars. left in model VIF %Error 
A-1 Stepwise 0.9937 10 (1.009–1.260) 0.33001 
A-2 Stepwise-PCA 0.9937 10 1 0.33001 
A-3 Stepwise-PCA-Stepwise 0.9937 10 1 0.33001 
A-4 Stepwise-PLS 0.9934 3 1 0.34289 
B-1 FDR 0.9894 3 (1.01–1.23) 0.45582 
B-2 FDR-PCA 0.9894 3 1 0.45582 

B-3 FDR-PCA-Stepwise 0.9894 3 1 0.45582 
B-4 FDR-PLS 0.9894 1 1 0.45582 
C-1 conFDR 0.9900 6 (1.01302–1.24359) 0.45066 

C-2 conFDR-PCA 0.9900 6 1 0.45066 



 

 

C-3 conFDR-PCA-Stepwise 0.9900 6 1 0.45066 

C-4 conFDR-PLS 0.9897 3 1 0.45497 
D-1 Tree 0.9894 4 (1.00064–1.23411) 0.45593 
D-2 Tree-PCA 0.9894 4 1 0.45593 

D-3 Tree-PCA-Stepwise 0.9894 4 1 0.45593 
D-4 Tree-PLS 0.9894 3 1 0.45652 
E-1 PAMSsites-PCA-Stepwise 0.9946 14 (1.02–2.11) 0.34485 
E-2 PCA-Stepwise 0.9935 110 1 0.42443 

F PLS 0.9947 10 1 0.43429 

 

 
4.2.3.     Results for the Conyers metamodel in stage 3 

    To construct the Conyers metamodel in stage 3, the variables from stages 1 and 2 are also included in 

the state space, for a total of 172 predictor variables. The results are shown in Table 5. The R2 values are 

still close to 1.0 for all scenarios, but slighlty lower than in stage 2, and the prediction error percentage 

rises compared to stage 2. This indicates slightly higher uncertainty in stage 3 modeling than stage 2. For 

the scenarios without feature extraction (A-1, B-1, C-1, and D-1), their VIFs are fairly close to the ideal 

value of 1.0. For dimension reduction, similar to stage 2, the worst scenarios are E-1, E-2, and stepwise 

regression scenarios A-1, A-2, and A-3. More importantly, PLS and binary-response FDR are again very 

successful, requiring as few as 1–3 latent variables. For model accuracy, as in stages 1 and 2, stepwise 

regression scenarios A-1 through A-4 and E-1 have the smallest prediction accuracy percentages and 

highest R2 values. Overall, Stepwise-PLS (scenario A-4) is again the best choice. 

 

Table 5. Results of the DM scenarios for the Conyers metamodel in stage 3 

Scenario R2 Vars. left in model VIF %Error 
A‐1 Stepwise 0.9847 21 (1.02–1.10) 0.51086 
A‐2 Stepwise‐PCA 0.9847 21 1 0.51086 
A‐3 Stepwise‐PCA‐Stepwise 0.9846 20 1 0.51669 
A‐4 Stepwise‐PLS 0.9846 3 1 0.52170 
B‐1 FDR 0.9659 3 (1.004–1.011) 0.75258 
B‐2 FDR-PCA 0.9659 3 1 0.75258 
B‐3 FDR-PCA-Stepwise 0.9659 3 1 0.75258 
B‐4 FDR-PLS 0.9652 1 1 0.75727 
C‐1 conFDR 0.9727 7 (1.00281–1.01647) 0.72409 
C‐2 conFDR-PCA 0.9727 7 1 0.72409 
C‐3 conFDR-PCA-Stepwise 0.9727 7 1 0.72409 



 

 

C‐4 conFDR-PLS 0.9727 2 1 0.72316 
D‐1 Tree 0.9659 4 (1.00605–1.01342) 0.75327 
D‐2 Tree-PCA 0.9659 4 1 0.75327 
D‐3 Tree-PCA-Stepwise 0.9659 3 1 0.74759 
D‐4 Tree-PLS 0.9659 2 1 0.75677 
E-1 PAMSsites‐PCA‐Stepwise 0.9848 21 (1.01–1.32) 0.50636 
E-2 PCA‐Stepwise 0.9871 135 1 0.71002 

F PLS 0.9879 11 1 0.71337 

 

4.2.4.     Results for the Conyers metamodel in stage 4 

    To construct the Conyers metamodel in stage 4, the variables from stages 1–3 are also included in the 

state space, for a total of 216 predictor variables. The results are shown in Table 6. The R2 values are still 

close to 1.0 for all scenarios and only very slightly lower than stage 3, but the prediction error percentage 

clearly rises compared to stage 3. For the scenarios without feature extraction (A-1, B-1, C-1, and D-1), 

there are VIFs that are too high, exceeding an inflation factor of 5. Only scenario C-1 using continuous-

response FDR yields acceptable VIFs that are close to 1.0. Hence, for stage 4, feature extraction becomes 

necessary to address the multicollinearity. For dimension reduction, as in stages 2 and 3, the worst 

scenarios are E-1, E-2, and stepwise regression scenarios A-1, A-2, and A-3. More importantly, PLS and 

FDR are again successful for dimension reduction, requiring 4–9 variables. While this is more than the 

previous stages, it is still over 95% reduction in dimension. For model accuracy, as in the previous stages, 

stepwise regression scenarios A-1 through A-4 and E-1 have the smallest prediction accuracy percentages 

and highest R2 values. Once again, Stepwise-PLS (scenario A-4) is the best overall. 

 

Table 6. Results of the DM scenarios for the Conyers metamodel in stage 4 

Scenario R2 Vars. left in model VIF %Error 
A‐1 Stepwise 0.9841 26 (1.04–44.9) 0.76287 
A‐2 Stepwise‐PCA 0.9841 26 1 0.76287 
A‐3 Stepwise‐PCA‐Stepwise 0.9841 25 1 0.76405 
A‐4 Stepwise‐PLS 0.9841 9 1 0.76289 
B‐1 FDR 0.9628 9 (1.05–56.15) 1.09164 
B‐2 FDR-PCA 0.9628 9 1 1.09164 
B‐3 FDR-PCA-Stepwise 0.9627 8 1 1.08940 
B‐4 FDR-PLS 0.9627 7 1 1.09064 
C‐1 conFDR 0.9548 9 (1.003–1.185) 1.25593 
C‐2 conFDR-PCA 0.9548 9 1 1.25593 



 

 

C‐3 conFDR-PCA-Stepwise 0.9548 9 1 1.25593 
C‐4 conFDR-PLS 0.9548 4 1 1.25641 
D‐1 Tree 0.9676 12 (1.01–12.10) 1.03436 
D‐2 Tree-PCA 0.9676 12 1 1.03436 
D‐3 Tree-PCA-Stepwise 0.9675 11 1 1.03789 
D‐4 Tree-PLS 0.9676 9 1 1.03437 
E-1 PAMSsites‐PCA‐Stepwise 0.9836 26 (1.03–6.31) 0.78045 
E-2 PCA‐Stepwise 0.9864 167 1 1.03480 

F PLS 0.9877 7 1 1.09891 

 

 

5.     Concluding remarks 

     Using the ozone pollution case study, we have compared the performance of a variety of DM scenarios 

that employ feature selection and feature extraction in various combinations. Across the four DP stages, it 

is clearly seen that scenario A-4 is the one that best achieves significant dimension reduction while 

maintaining good model accuracy and guaranteeing orthogonality. This scenario utilizes stepwise 

regression first then conducts PLS. With regard to feature extraction, both PCA and PLS guarantee 

orthogonality, but PCA was clearly inferior to PLS for dimension reduction, likely because PLS uses 

response information to select the latent variables, while PCA does not. With regard to feature selection, 

stepwise regression can achieve good model accuracy, but not necessarily good dimension reduction. On 

the other hand, FDR can achieve good dimension reduction, but is inferior with regard to model accuracy. 

Tree modeling falls in between, with both dimension reduction and model accuracy that is moderate in 

performance, neither worst nor best. 

The primary impact gained from our results is with regard to the multicollinearity. In stages 1 through 

3, acceptable VIFs are achieved without feature extraction, however, in stage 4, unacceptably high VIFs 

is exhibited. While model accuracy is not affected, it must be understood that this result assumes future 

data will lie within the same multicollinear space. High VIFs directly measure the instability (high 

variance) in a model’s parameter estimates, which means that small changes in the data or even in the 

modeling approach can lead to very different parameter estimates. In statistics, this instability indicates a 

non-robust model that may not generalize well (Kutner et al. 2004). These high VIFs also have 



 

 

implications for DACE-based ADP. When the VIFs are close to 1.0, that indicates the multicollinearity 

among the selected set of variables is low and an ideal experimental design may still be employed for 

DACE-based ADP. However, for stage 4, low VIFs could not be achieved for all models and feature 

extraction becomes necessary in order to appropriately implement DACE-based ADP. 

In summary, it is recommended that stepwise regression followed by PLS be employed when high 

multicollinearity is present among the state variables. However, a disadvantage created by feature 

extraction is the creation of the latent variables in place of the original variables. The DP formulation in 

equation (1) and corresponding solution algorithm will need to be restructured in terms of the latent 

variables (z), and all state transition functions will need to be recreated. Future work will formulate 

candidate processes for incorporating the latent variables in DACE-based ADP. Computational effort will 

be evaluated, where decreased computation is expected due to dimension reduction, but some increase in 

computation may result from handling latent variables in the ADP algorithm. We plan to test 

orthogonalized DACE-based ADP on additional applications, including one related to electric vehicle 

charging stations. Finally, the ultimate comparison will demonstrate the impact of high multicollinearity 

on the performance of the ADP solution policy, so as to promote the use of the DM methods presented in 

this paper. 
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