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a b s t r a c t 

High ground-level ozone concentrations constitute a serious air quality problem in many metropolitan 

regions. In this paper, we study a stochastic dynamic programming (SDP) formulation of the Atlanta 

metropolitan ozone pollution problem that seeks to reduce ozone via reductions of nitrogen oxides. The 

initial SDP formulation involves a 524-dimensional continuous state space, including ozone concentra- 

tions that are highly correlated. In prior work, a design and analysis of computer experiments (DACE) 

based approximate dynamic programming (ADP) solution method was able to conduct dimensionality 

reduction and value function approximation to enable a computationally-tractable numerical solution. 

However, this prior work did not address state space multicollinearity. In statistical modeling, high mul- 

ticollinearity is well-known to adversely affect the generalizability of the constructed model. This issue 

is relevant whenever an empirical model is trained on data, but is largely ignored in the ADP literature. 

We propose approaches for addressing the multicollinearity in the Atlanta case study and demonstrate 

that if high multicollinearity is ignored, the resulting empirical models provide misleading information 

within the ADP algorithm. Because many SDP applications involve multicollinear continuous state spaces, 

the lessons learned in our research can guide the development of ADP approaches for a wide variety of 

SDP problems. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Ozone exists naturally in the atmosphere. In the stratosphere,

igh concentrations of ozone protect the earth’s surface from

armful ultraviolet radiation emitted by the sun. Much lower

zone concentrations are found in the troposphere and are mainly

ue to the occurrence of photochemical reactions and stratospheric

ntrusions. However, in the troposphere, especially in metropoli-

an areas characterized by substantial anthropogenic emissions,

hotochemical reactions involving anthropogenic nitrogen oxides 

NO x ) and volatile organic compounds (VOCs) significantly increase

round-level ozone concentrations. High ozone levels and other air

ollutants are harmful to both the natural ecosystem and humans

 U.S. Environmental Protection Agency, EPA, 2018 ). Thus, there is
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he need for regulations to control the emission of NO x and/or

OCs to reduce ground-level ozone concentrations. 

In this study, we consider the issue of a state space multi-

ollinearity for an ozone pollution problem from Atlanta, Geor-

ia. The stochastic dynamic programming (SDP) formulation of this

zone pollution problem involves a 524-dimensional continuous

tate space ( Yang, Chen, Chang, Murphy & Tsai, 2007 ), contain-

ng ozone concentrations and precursor NO x emissions occurring

rom 4:00 AM through 7:00 PM across the Atlanta metropolitan

egion. The cycle of ozone formation is daily, rising during the day

nd falling overnight. As commented in Ariyajunya, Chen, Chen and

im (2017) , the ozone concentrations are correlated spatially and

emporally. Ozone formation is limited by the presence of precur-

or NO x and/or VOC emissions. Atlanta, is “NO x limited,” which

eans that lowering ozone concentrations can be best achieved by

educing NO x emissions ( Chameides, Lindsay, Richardson & Kiang,

988 ). Hence, the decision variables are reductions in NO x emis-

ions in different locations and time periods across the Atlanta

etropolitan region. The goal is to minimize the expected cost
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s  
of reducing NO x emissions at each stage, so as to maintain the

hourly-averaged ozone level at or below the EPA limit. 

A design and analysis of computer experiments (DACE) based

approximate dynamic programming (ADP) method has been em-

ployed to achieve a computationally-tractable numerical solution

to this high-dimensional SDP problem ( Yang et al., 2007 ; Yang,

Chen, Chang, Sattler & Wen, 2009 ). In particular, Yang et al.

(2009) focused on using ADP to solve the ozone pollution con-

trol problem with the state transition metamodel developed us-

ing stepwise regression in Yang et al. (2007) . However, nei-

ther addressed the issue of state space multicollinearity. In fact,

Ariyajunya et al. (2017) revealed that 3 of the 16 regression mod-

els in Yang et al. (2007) had very high variance inflation factors

(VIFs), where high VIFs occur when there is high multicollinearity.

Ariyajunya et al. (2017) demonstrated the presence of high state

space multicollinearity in the ozone pollution SDP problem and

proposed methods to orthogonalize the multicollinear state space,

but did not demonstrate the impact of multicollinearity on the ADP

solution. 

In ADP value function approximation, the state space is anal-

ogous to the predictor or input variable space in statistics, and

the value function is the unknown response surface. High mul-

ticollinearity among predictor variables leads to the situation in

which there are infinitely many model forms with seemingly sim-

ilar prediction accuracy, and there is no easy algorithm to choose

among them ( Kutner, Nachtsheim, Neter & Li, 2005 : Ch 7). Conse-

quently, an empirical model fit over a multicollinear space is sub-

ject to poor generalizability, meaning that the model form is sensi-

tive to small changes in the data. While prediction accuracy might

appear good within the multicollinear space, the wide variation in

model forms can be extreme, with completely different sets of sig-

nificant predictor variables, and estimated model coefficients that

vary by orders of magnitude or switch signs, consequently affect-

ing generalizability. 

If the state variables are not multicollinear, then most any

flexible statistical modeling method (or machine learning algo-

rithm) can be used to generate a reasonable value function ap-

proximation. If multicollinear state space data are used to fit a

value function approximation, then one is unlikely, given the in-

finite number of similarly accurate models, to uncover the ap-

propriate relationships between the state variables and the value

function. This, in turn, will provide misleading information to

the subsequent stagewise optimizations that depend on the ap-

proximate value function. DACE based ADP is unique in ADP

because it ensures an uncorrelated (or orthogonal) representa-

tion of the state space by using design of experiments, so as

to provide better data for the value function approximation. De-

sign of experiments is the gold standard for studying causal re-

lationships ( Box, Hunter & Hunter, 1978 ), with the most well-

known being the clinical trial. However, state space multicollinear-

ity must be addressed in order to take proper advantage of a

DACE approach. The strength of our ADP research lies it in its

foundation in well-established statistical approaches. In the next

section, we provide background on the DACE based ADP ap-

proach. In Section 3 , background is given on the ozone pol-

lutions SDP problem. Section 4 presents development of state

transition metamodels to study state space multicollinearity, and

SDP results using these state transition metamodels are com-

pared in Section 5 . Finally, Section 6 presents the concluding

recommendations. 

2. Background and contribution 

Eq. (1) is a recursive formulation of the finite-horizon

continuous-state SDP problem ( Bellman, 1957 ; Bertsekas, 2005 ): 
 t ( x t ) = min 

u t 
E { c t ( x t , u t , ε t ) + V t+1 ( x t+1 ) } 

 .t . x t+1 = f t ( x t , u t , ε t ) , for t = 1 , . . . , T − 1 

u t ∈ �t , for t = 1 , . . . , T 

here V T ( x T ) = c T ( x T ) . (1)

At the beginning of stage t , the state vector is x t ∈ R n , the deci-

ion vector is u t ∈ R m , and the vector of random variables is ε t ∈ R l .

e denote the future value function (FVF) by V t (·) , where the

tagewise optimization minimizes the expectation of the stagewise

ost function c t (·) with the FVF for the future stage t+ 1, and the

inimization is taken over u t , subject to the constraints �t and

he state transition function f t (·) . Exact solutions are only possi-

le for small-scale problems under restrictive assumptions, hence,

DP and reinforcement learning (RL) algorithms (e.g. Powell 2011,

ertsekas, 2005 ) arose to enable numerical solutions, in particular,

o address the curse of dimensionality. However, as commented

n Powell (2011), for high-dimensional problems with continuous

tate and decision spaces, most existing ADP and RL algorithms

till cannot perform well. To specifically address the challenges

f continuous spaces, Chen, Ruppert and Shoemaker (1999) , in-

roduced a statistical perspective that we now refer to as a DACE

ased ADP approach. This approach has enabled numerical solu-

ions to several high-dimensional continuous-state SDP problems

see Cervellera, Chen & Wen, 2006 ; Chen, 1999 ; Tsai, Chen, Beck &

hen, 2004 ; Yang et al., 2009 ). A brief introduction to DACE is pro-

ided in Section 2.1 , followed by the DACE based ADP algorithm in

ection 2.2 , and our contribution in Section 2.3 . 

.1. Design and analysis of computer experiments (DACE) 

The concept of DACE was introduced by Sacks, Welch, Mitchell

nd Wynn (1989) as an approach to collect and analyze data from

 deterministic simulation model. The approach is similar to re-

ponse surface methodology ( Box et al., 1978 ). Computer experi-

ents constitute the use of design of experiments to control in-

ut settings for computer model runs. In most DACE applications,

he computer model is a simulation model, and in Sacks et al.

1989) , the simulation was assumed to be deterministic. Sacks

t al. (1989) modeled the deterministic response output as the re-

lization of a stochastic process, thereby providing a statistical ba-

is for choosing the inputs for efficient prediction. 

Chen, Tsui, Barton and Meckesheimer (2006) provided a review

f DACE literature, extending the computer model to essentially

ny computer algorithm that defines an input and output rela-

ionship. Specifically, Chen et al. (2006) defined two basic tasks in

ACE that must be conducted: (i) data collection; and (ii) statis-

ical modeling. The data collection task is controlled by design of

xperiments, commonly space-filling designs, such as Latin hyper-

ubes, orthogonal arrays and number-theoretic methods. The in-

ention of the data collection task is not to merely sample data

rom a complex computer model. Rather, the intention is to control

ata collection, so as to improve the ability of the statistical mod-

ling task to uncover a high quality approximation with minimal

ata. As for statistical modeling, this task is not merely the fitting

f a pre-specified model to data. Rather, this task utilizes statis-

ical modeling methods that are adaptively constructed to fit the

ata, such as regression trees and multivariate adaptive regression

plines (MARS). Chen et al. (1999) utilized orthogonal array ex-

erimental designs and MARS, and Yang et al. (2009) employed a

umber-theoretic method, specifically called a low-discrepancy se-

uence, and MARS for the Atlanta ozone pollution case study. 

.2. DACE based ADP approach 

In ADP, the stagewise optimization is the computer model,

tate space sampling is analogous to data collection, and FVF
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Fig. 1. General DACE based ADP algorithm for continuous-state SDP problems ( Chen 

et al., 1999 ). 
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space. 
pproximation is analogous to statistical modeling. How one con-

rols and represents the input data is actually more important than

ow the output data are modeled. In observational data studies,

here is no control over data collection, but in computer experi-

ents, there is absolute control over data collection. DACE based

DP, presented in Fig. 1 , fully understands this concept, while the

ajority of ADP literature have yet to recognize this and con-

inue to rely on Monte-Carlo or grid-based techniques for state

pace sampling. By fully controlling the sampling of the continuous

tate space via design of experiments (DoE in Fig. 1 ), DACE based

DP is able to overcome the curse of dimensionality and tackle

ery high-dimensional SDP problems. The statistical modeling task

hat approximates the FVF in DACE based ADP can be addressed

ith most any flexible statistical modeling method, although some

ethods may perform better with specific experimental designs

e.g., Cervellera, Wen & Chen, 2007 ). In general, it is assumed that

rior knowledge of any special structure for the FVF is not avail-

ble. 

In Fig. 1 , the output of each stagewise optimization, assuming

 global optimum, is the point on the FVF corresponding to each

oE state point. Upon completion of the entire set of computer

odel runs, statistical modeling is implemented to approximate

he FVF. The resulting solution to the algorithm in Fig. 1 is the

DP control policy, represented by the approximated FVFs, ˆ V t (·) .
he SDP control policy can then be implemented forward in real

ime by re-optimizing the approximated FVFs ( Chen et al., 1999 ;

ejada-Guibert, Johnson & Stedinger, 1993 ). While the ADP algo-

ithm is typically computationally-intensive, the re-optimization is

ery quick, enabling implementation of the SDP control policy in

eal time. 

.3. Contribution 

While DACE based ADP effectively avoids multicollinearity,

 key aspect is the appropriate representation of the state

pace prior to implementing a DACE approach. In this study, to

emonstrate the effect of multicollinearity, we chose the high-

imensional Atlanta ozone pollution SDP problem, for which only

he DACE based ADP algorithm has been successful in achieving

 numerical solution ( Yang et al., 2009 ). The baseline DACE based

olution approach in this study technically avoids multicollinear-

ty within the ADP algorithm, which is already an improvement

ver more common ADP approaches that do not take advantage

f DACE. In order to fully address the multicollinearity issue, it is

ecessary to consider how the state space is represented from two

spects: 

(i) If the naturally occurring state space is multicollinear, then

a near-orthogonal DACE based representation is not appro-

priate. Example systems include energy, where market price
and meteorology are correlated over time and space; the

natural environment, where air quality or water quality ob-

servations are correlated over time and space; and health

care, where patient characteristics are correlated due to

commonly occurring medical conditions. However, it is also

not appropriate to simply conduct state space sampling over

the multicollinear state space. Hence, alternative approaches

are needed, which motivates the second aspect. 

(ii) The state transition model represents how the state changes.

For many real world problems, the state transitions are un-

known and must be estimated. In this case, there are two

ways to handle multicollinearity. The traditional statistical

modeling approach is to conduct a model-search process

that enables a low-VIF state transition metamodel ( Kutner

et al., 2005 ). With such a model, the state space can ap-

propriately be represented by near-orthogonal experimental

designs in a DACE based ADP method. The other approach

is to transform the multicollinear space into an orthogonal

space (e.g., Ariyajunya et al., 2017 ; Kim, 2009 ), and then con-

struct the state transition metamodel over the orthogonal-

ized space. 

Based on the two aspects presented above, in order to demon-

trate the drawbacks of ignoring the multicollinearity, three types

f metamodels are developed. The first type ignores the inherent

ulticollinearity in order to generate a high-VIF metamodel that

ill demonstrate the adverse effects of multicollinearity. The sec-

nd type eliminates predictors from the regression model, so as to

ield a low-VIF metamodel, which should be more generalizable

nd stable than high-VIF models. However, it is not uncommon

hat predictors that can improve the accuracy of a statistical model

ill need to be eliminated in order to avoid high VIFs. In this sit-

ation, an accurate low-VIF model will not be possible to obtain.

herefore, the third type tries to keep all the important features in

he state space and eliminate multicollinearity by orthogonalizing

he state space through feature extraction techniques. A challenge

or this third type is that it requires the transition model to be

econstructed in the orthogonalized state space, so that the associ-

ted Bellman equation and corresponding backward ADP solution

lgorithm can appropriately utilize the orthogonalized state space.

ince the state space is transformed to an orthogonalized space

n this third type, the direct relationships with the original state

ariables are no longer what is modeled. Specifically, the orthog-

nalized state space employs linear combinations of the original

tate variables. While sometimes linear combinations uncover la-

ent meanings, in general, they are not necessarily meaningful. As

 consequence, the relationships constructed over this orthogonal-

zed state space often do not provide insight into the relationships

ith the original state variables. For the Atlanta ozone pollution

ase study, we demonstrate one approach for reconstructing the

ransition metamodel for the orthogonalized state. However, future

ork will need to continue to study this empirical state transition

odeling challenge. 

After developing these three types of metamodels, we follow

ang et al. (2009) to apply them to conditions based on one of

he worst cases in Atlanta ozone pollution history. In summary, the

ajor contributions are as follows: 

a) The issue of multicollinearity in high-dimensional continuous-

state SDP is demonstrated to encourage other ADP researchers

to recognize the potential drawbacks of ignoring multicollinear-

ity. 

b) Two options for state transition metamodeling, low-VIF and or-

thogonalized, are presented to develop an appropriate DACE

based ADP approach for a multicollinear, continuous state
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3. Atlanta ozone pollution control problem 

The Atlanta ground-level ozone pollution SDP problem in Yang

et al. (2009) includes highly correlated ozone concentration state

variables at different monitoring stations and different time pe-

riods. As described in Section 1 , NO x and VOC emissions are the

main precursors for high ground-level ozone concentrations in ur-

ban areas. However, Atlanta is “NO x -limited,” which means that it

would be ineffective to target VOC emissions in a control strategy.

Thus, the focus is on only NO x emissions in this case study. To con-

trol NO x emissions, it is necessary to control both point and non-

point sources. Power plants and other heavy industries are cate-

gorized as point sources of NO x emissions, while other sources,

such as automobiles and small industries are treated as non-point

sources. Air quality researchers utilize complex 3-D air chemistry

photochemical models to study emission control strategies. Follow-

ing the work of Yang et al. (2009) , we utilize the Urban Airshed

Model (UAM, U.S. EPA, 1990 ) to simulate Atlanta ozone pollution

for a 160 × 160 sq. km region over the metropolitan area. The re-

gion contains a total of 102 point sources, and non-point sources

are represented on a 5 × 5 grid over the region. Ozone concentra-

tions are monitored at four Photochemical Assessment Monitoring

Stations located at Conyers, South Dekalb, Tucker, and Yorkville. To

reduce the ozone concentrations, emission controls are applied to

specific point sources and non-point sources in the 5 × 5 grid and

over specific time periods. Because ozone concentrations increase

during the daytime when the sun is shining, only time periods

from 4:00 AM to 7:00 PM are considered as potential time peri-

ods for reducing emissions. 

To apply SDP to pollution control, five 3-hour time periods are

defined: 4:00 AM to just before 7:00 AM (time period 0), 7:00 AM

to just before 10:00 AM (time period 1), 10:00 AM to just before

1:00 PM (time period 2), 1:00 PM to just before 4:00 PM (time

period 3), and 4:00 PM to just before 7:00 PM (time period 4).

Time period 0 is considered as the initialization stage, and the SDP

controls are applied to time periods 1 through 4. Following the

SDP formulation in Eq. (1) , state and decision variables are defined

as follows. Decision variables ( u t ) are the fractions of the nomi-

nal emissions to be reduced and are component-wise defined as

u i t = (M 

i 
t − E i t ) /M 

i 
t , where M 

i 
t is the nominal base case emission at

(point or non-point) source i in time period t , and E i t is the corre-

sponding reduced emission, such that M 

i 
t − E i t is the reduction in

the emissions. State variables ( x t ) at the beginning of SDP stage t

consist of maximum hourly-averaged ozone concentrations at the

four monitoring stations in time periods t – 1 and earlier, and de-

cisions on emission reductions from time periods t – 1 and ear-

lier. Because the last time period has the longest history, it has the

highest dimension, and consequently defines the dimensionality of

the SDP problem. Specifically, SDP stage 4 consists of 524 state

variables, covering 4 monitoring stations, 25 (5 × 5) grid squares

for non-point sources, and 102 point sources over 4 time periods: 

4 time periods × (4 stations + 25 non-point sources + 102 point

sources) = 524. 

The decision variables provide targeted information on where

and when to reduce emissions, but assessing direct control in-

terventions is not the purpose of the present study. Yang et al.

(2009) provided a discussion in Section 4.4 on implementation

considerations, and related work studying potential control strate-

gies in State Implementation Plans, such as emission reductions at

brick kilns, traffic signal improvement, or carpooling programs, has

been published by Sule, Chen and Sattler (2011) and Hsu, Rosen-

berger, Sule, Sattler and Chen (2014) . 

The UAM was used both for conducting data collection to build

the state transition metamodel ( Yang et al., 2007 ) and for evalu-

ating the SDP control policies ( Yang et al., 2009 ), including sta-

tistical models for maximum hourly-averaged ozone O 

S 
t at station
 in time period t . For t = 1, 2, 3, the models for O 

S 
t are part

f the estimated SDP state transition function in Eq. (1) , which

epends on state, decision, and random vectors. For t = 4, O 

S 
t is

 final outcome of the evolution of ozone at station S over the

ay, but can still be modeled like a transition function. Let the

ector O t hold the ozone concentrations O 

S 
t for all four monitor-

ng stations. For SDP stage t , the state x t includes the past his-

ory on both ozone { O 1 , O 2 , . . . , O t−1 } and emission reduction de-

isions { u 1 , u 2 , . . . , u t−1 } , the decision vector is u t , and the statisti-

al metamodel form assuming an additive random error ε can be

ritten as in Eq. (2) : 

 

S 
t = f S t ( x t , u t , ε ) = f S t ( O 1 , O 2 . . . , O t−1 , u 1 , u 2 , . . . , u t ) + ε, (2)

here f S t (·) is the function to be approximated for station S in

ime period t . As shown in Fig. 2 , ozone levels O 1 , O 2 , . . . , O t−1 can

nvolve high multicollinearity ( Ariyajunya et al., 2017 ). As noted in

ection 2.3 , the state transitions are unknown and are estimated

ia a statistical metamodel using data from the Atlanta UAM. Tech-

ically, the UAM may be used as a state transition function to pre-

ict the state values at next stage. However, the direct application

f the UAM in SDP is impractical because of the high computa-

ional cost. Yang et al. (2007) employed stepwise regression for

tate transition metamodeling, and variants of the regression ap-

roach were explored by Ariyajunya et al. (2017) to provide guid-

nce on addressing the multicollinearity. Details on state transition

etamodeling for the current study are given in Section 4 . 

The main goal of the Atlanta ozone pollution problem is to

aintain the ozone level to satisfy the EPA standard. Yang et al.

2009) used the one-hour EPA ozone standard of 0.125 ppm (parts

er million), although the standard has since decreased (see

ttps://www.epa.gov/criteria- air- pollutants ). The stagewise objec-

ive function from Yang et al. (2009) , specified in Eq. (3) , is divided

nto two parts, namely, the emission reduction cost function using

 e (·) in Eq. (4) and an ozone penalty cost function using c max (·) in
q. (5) : 

 t ( x t , u t , ε t ) = α
∑ 

u i t ∈ u t 
W 

i 
t c e 

(
u 

i 
t 

)
+ β

∑ 

S 

c max 

(
O 

S 
t 

)
, (3)

 e ( u ) = 

{ 

0 , u ≤ 0 

4 u 

3 − 4 u 

4 , 0 < u < 0 . 5 

u − 0 . 25 , u ≥ 0 . 5 

(4)

 max ( x ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

0 , x ≤ 0 . 118 

2 . 5 × 10 

11 
( x − 0 . 118 ) 

3 

−6 . 25 × 10 

13 
( x − 0 . 118 ) 

4 
, 0 . 118 < x < 0 . 12 

10 

6 
( x − 0 . 119 ) , x ≥ 0 . 12 

(5)

The index t in Eq. (3) denotes the four SDP stages. Both c e (·)
nd c max (·) follow smooth convex functional forms that have con-

inuous second derivatives to facilitate the use of a fast sequential

uadratic programming optimization routine from the NAG library

 NAG, 1991 ). The cost function c e (·) in Eq. (4) follows a slowly ris-

ng polynomial curve when the fraction of reduction is less than

.5 and then rises linearly for higher fractions. This form is consis-

ent with practice in that it is relatively easy to achieve small emis-

ion reductions, but higher reductions involve higher investment.

he fraction of reduction is also constrained within [0,1]. In Eq. (3) ,

 

i 
t is a weighting factor for the emission source i , where a source

ith higher nominal base case emissions has proportionally higher

 

i 
t , such that the per unit cost of reduction is equivalent across

ll emission sources. The ozone penalty cost in Eq. (5) applies no

enalty if the estimated maximum hourly-averaged ozone stays

elow 0.118 ppm. While the standard is 0.125 ppm, a more conser-

ative cutoff was chosen to allow a margin for error. Between 0.118

nd 0.120, a slowly rising penalty is applied, while above 0.120,

https://www.epa.gov/criteria-air-pollutants
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Fig. 2. Scatterplots showing correlations between the state variables of four time periods in Yorkville ( Ariyajunya et al., 2017 ). 
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Fig. 3. State transition metamodeling process. 
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he penalty rises quickly, so that the optimization prioritizes re-

ucing ozone. In order to balance the emission reduction cost and

he ozone penalty, the α and β values are chosen such that the

zone penalty dominates the emission reduction cost when the

aximum hourly-averaged ozone exceeds the EPA standard. To nu-

erically solve for the SDP control policy, we implement the DACE

ased ADP approach based on Yang et al. (2009) using the state

ransition metamodels developed in Section 4 . ADP implementa-

ion details are given in Section 5 with the computational results. 

. Development of state transition functions 

When Yang et al. (2007) exploited statistical modeling methods

o estimate the state transition functions, the multicollinearity is-

ue in the state space was ignored. In this study, we used VIFs,

s in Ariyajunya et al. (2017) , to examine the degree of the multi-

ollinearity of the state space. They defined a metamodel with VIFs

 4 as having low multicollinearity, and a metamodel with maxi-

um VIF > 10 as having high multicollinearity. A VIF of 10 means

hat the variance of that model coefficient estimator is 10 times

igher than it should be, resulting in an unstable model. 

Three state transition metamodels are developed in this sec-

ion, the high-VIF metamodel ( Section 4.1 ), the low-VIF metamodel

 Section 4.2 ), and the orthogonalized metamodel ( Section 4.3 ). Re-

all that the purpose of the high-VIF metamodel is to illustrate

he situation when high multicollinearity is ignored, while the

ther two metamodel types are approaches for addressing state

pace multicollinearity in ADP. Our process for estimating the state

ransition metamodels follows the approach of Yang et al. (2007) ,

hich is summarized in Fig. 3 . 

The initialization, data collection, and mining phases were pre-

iously conducted ( Yang et al., 2007 ), so our descriptions for each

etamodel type focus on the modeling phase. Following the min-
ng phase, 87 of the 102 point sources are eliminated, while all

ther state variables are kept to move on to the modeling phase.

dditional dimension reduction occurs in the modeling phase, de-

ending on which variables are selected for the final state transi-

ion metamodel. All three metamodel types are constructed using

he same data collected from the Atlanta UAM, and start with the

ame set of variables following the mining phase. The summary

ount of variables in post-mining phase and post-modeling phase

or each of the three metamodel types is given in Table 1 . For list-

ngs of the decision and state variables and their estimated coef-

cients for the three metamodel types, refer to the Appendix in

riyajunya (2012) . 

.1. High-VIF metamodels 

The high-VIF state transition metamodel is deliberately devel-

ped to represent the situation when high multicollinearity is ig-

ored. To build high-VIF metamodels, only the emission decision

ariables ( u 1 , u 2 , . . . , u t ) are considered for elimination in the min-

ng phase, while all ozone levels ( O 1 , O 2 , . . . , O t−1 ) are maintained

or the modeling phase. Table 2 provides summary information on

he high-VIF state transition metamodel. In particular, it can be

een that the maximum VIFs are above 10 for all models, except

or the Conyers maximum ozone level during 7–10 AM. The max-

mum VIF for the Yorkville maximum ozone level during 1–4 PM

ndicates that a model coefficient estimator’s variance is over 1300
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Table 1 

Summary count of the state and decision variables for the different metamodel types. 

Stage Variables Number of variables 

post-mining phase 

State transition metamodel type 

High-VIF Low-VIF Orthogonalized 

Stage 1 Decision variables 40 29 17 29 

State variables 44 34 16 25 

Total 84 63 33 54 

Stage 2 Decision variables 40 31 9 28 

State variables 88 59 23 23 

Total 128 90 32 51 

Stage 3 Decision variables 40 30 9 25 

State variables 132 82 21 14 

Total 172 112 30 39 

Stage 4 Decision variables 40 12 3 7 

State variables 176 92 19 9 

Total 216 104 22 16 

Table 2 

Summary of the high-VIF ozone state transition metamodel. 

Maximum ozone model Model R 2 Root MSE Maximum VIF 

Conyer 7–10 AM 0.2682 0.0007 1.0859 

S.Dekalb 7–10 AM 0.9864 0.0006 17.8589 

Tucker 7–10 AM 0.9612 0.0012 62.0089 

Yorkville 7–10 AM 0.9945 < 0.0001 62.1610 

Conyer 10 AM-1 PM 0.9937 0.0003 30.2103 

S.Dekalb 10 AM-1 PM 0.2642 0.0056 69.7131 

Tucker 10 AM-1 PM 0.6370 0.0027 69.4942 

Yorkville 10 AM-1 PM 0.9993 < 0.0001 163.6091 

Conyer 1–4 PM 0.9846 0.0006 76.9823 

S.Dekalb 1–4 PM 0.9920 0.0010 75.9784 

Tucker 1–4 PM 0.9747 0.0010 74.8509 

Yorkville 1–4 PM 0.9994 < 0.0001 1366.4426 

Conyer 4–7 PM 0.9847 0.0013 95.7745 

S.Dekalb 4–7 PM 0.9930 0.0009 86.5118 

Tucker 4–7 PM 0.9891 0.0008 92.4630 

Yorkville 4–7 PM 0.9994 < 0.0001 374.8161 
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Table 3 

Summary of the low-VIF ozone state transition metamodel. 

Maximum ozone model Model R 2 Root MSE Maximum VIF 

Conyer 7–10 AM 0.2646 0.0007 1.0149 

S.Dekalb 7–10 AM 0.9855 0.0007 1.0075 

Tucker 7–10 AM 0.9607 0.0013 1.0161 

Yorkville 7–10 AM 0.9942 < 0.0001 1.0158 

Conyer 10 AM–1 PM 0.9935 0.0003 1.2438 

S.Dekalb 10 AM–1 PM 0.1954 0.0058 1.0306 

Tucker 10 AM–1 PM 0.6080 0.0028 1.0282 

Yorkville 10 AM–1 PM 0.9992 < 0.0001 1.0128 

Conyer 1–4 PM 0.9808 0.0007 1.0179 

S.Dekalb 1–4 PM 0.9692 0.0019 1.0297 

Tucker 1–4 PM 0.9536 0.0014 1.3483 

Yorkville 1–4 PM 0.9990 0.0000 2.3313 

Conyer 4–7 PM 0.9625 0.0019 3.4408 

S.Dekalb 4–7 PM 0.9801 0.0014 1.5708 

Tucker 4–7 PM 0.9308 0.0019 1.5675 

Yorkville 4–7 PM 0.9624 0.0001 1.0166 
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P  
times higher than it should be, but the Model R 

2 and Root MSE

indicate a high quality fit to the data. This high-VIF metamodel

demonstrates that quality of fit alone is insufficient for assessing

empirical models when multicollinearity is present. 

4.2. Low-VIF metamodels 

To ensure the creation of low-VIF metamodels, after the mining

phase in Fig. 3 , we add a multicollinearity assessment procedure

using VIFs to remove predictor variables that contribute to high

VIFs, re-fit stepwise regression and re-evaluate the metamodel un-

til all VIFs are below 4. In the modeling phase, all maintained pre-

dictor variables must be statistically significant at a significance

level of 0.05. It must be noted that the process to identify a low-

IF metamodel is a time-consuming manual search process to find

that “best” low-VIF empirical model, and may not always yield a

quality model. The summary of the low-VIF state transition meta-

model is presented in Table 3 . Most of the VIFs are near 1.0, in-

dicating nearly no variance inflation, despite the presence of high

multicollinearity among the full set of predictor variables. In other

words, there is very little multicollinearity among the selected set

of predictor variables. 

To illustrate the difference between low-VIF and high-VIF meta-

models, Fig. 4 compares the estimated model coefficients for pre-

dicting the maximum hourly-averaged ozone at the Yorkville mon-

itoring station in the four time periods. According to Tables 2 and

3 , the fit is excellent for all these models, but in Fig. 4 it is

clear that the high-VIF model is very different from the low-VIF

model. This demonstrates the challenge of identifying good mod-
ls in the presence of multicollinearity because many models have

 similar fit to the data. For Yorkville, high quality low-VIF mod-

ls were possible, and these models are seen to have fewer pre-

ictors. Further, the high-VIF models exhibit coefficients with the

ncorrect sign, namely a negative relationship between ozone vari-

bles. Blind machine learning algorithms that do not intelligently

ddress multicollinearity can encounter similar issues. 

.3. Orthogonalized metamodels 

An alternative approach to addressing multicollinearity is to

rthogonalize the state space. To conduct this, an orthogonaliza-

ion phase is added after the mining phase, as shown in Fig. 5 .

riyajunya et al. (2017) explored several modeling approaches for

he orthogonalization of the state space, and their comparison,

hich was only conducted for the last stage of the SDP problem,

ecommended using stepwise regression and partial least squares

PLS). We refer to this as stepwise-PLS in the orthogonalization

hase. Compared to the low-VIF modeling procedure, the process

n Fig. 5 is completely automated. However, as previously men-

ioned, the direct relationships with the original state variables

fter state space transformation are no longer what is modeled,

hich brings a new challenge to the ADP solution approach. Note

hat only the state space is orthogonalized while the current stage

ecision variables are maintained in their original form for the

tagewise optimization. 

As described in Kim (2009) , PLS performs fitting and transfor-

ation simultaneously during the modeling process. Consequently,

LS cannot be directly used to build the state transition metamodel
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Fig. 4. Coefficients for the Yorkville low-VIF and high-VIF models in the four time periods. 

Fig. 5. Process for development of orthogonalized state transition metamodels. 
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Table 4 

Summary of the stepwise-PLS ozone state transition metamodel. 

Maximum Ozone Model Model R 2 Root MSE Part 1 

Max VIF 

Part 2 

Max VIF 

Conyer 7–10 AM 0.2759 0.0007 1 1.0040 

S.Dekalb 7–10 AM 0.9184 0.0016 1 1.0033 

Tucker 7–10 AM 0.9149 0.0019 1 1.0025 

Yorkville 7–10 AM 0.9551 < 0.0001 1 1.0071 

Conyer 10 AM–1 PM 0.9348 0.0011 1 1.0009 

S.Dekalb 10 AM–1 PM 0.2847 0.0055 1 1.0088 

Tucker 10 AM–1 PM 0.6400 0.0027 1 1.0001 

Yorkville 10 AM–1 PM 0.9690 0.0002 1 1.0048 

Conyer 1–4 PM 0.9430 0.0012 1 1.0043 

S.Dekalb 1–4 PM 0.9318 0.0029 1 1.0007 

Tucker 1–4 PM 0.9156 0.0019 1 1.0049 

Yorkville 1–4 PM 0.9735 0.0002 1 1.0000 

Conyer 4–7 PM 0.9795 0.0014 1 1.0001 

S.Dekalb 4–7 PM 0.9858 0.0012 1 1.0074 

Tucker 4–7 PM 0.9469 0.0017 1 1.0171 

Yorkville 4–7 PM 0.9231 0.0002 1 1.0016 

 

f  

t  

s  
ecause the decision variables are not orthogonalized. To incorpo-

ate the orthogonalized state variables from PLS into a backward

DP algorithm, the modeling phase in Fig. 5 employs stepwise re-

ression that is divided into two parts. First, in each SDP stage t ,

he ozone variables O t are modeled as a function ( g 1 t ) of the or-

hogonalized state variables z t in Eq. (6) , and the orthogonalized

uture state, z t+1 is also be modeled as a function ( f 1 z t ) of z t in

q. (7) : 

 t = g 1 t ( z t ) + ε (6) 

 t+1 = f 1 

z 
t ( z t ) + ε (7) 

Second, the deviations { O t − ̂ g1 t ( z t ) } are modeled as a function

( g 2 t ) of the decision vector u t in Eq. (8) . Similarly, the deviations

 z t+1 − ̂ f 1 z t ( z t ) } are modeled as a function ( f 2 z t ) in Eq. (9) : 

 t − ̂ g1 t ( z t ) = g 2 t ( u t ) + ε (8) 

 t+1 − ̂ f 1 

z 
t ( z t ) = f 2 

z 
t ( u t ) + ε (9) 

Finally, the approximated 

ˆ O t and ˆ z t+1 combine the two parts in

qs. (10) and ( 11 ): 

ˆ 
 t = 

̂ g1 t ( z t ) + 

̂ g2 t ( u t ) (10) 

ˆ  t+1 = 

̂ f 1 

z ( z t ) + ̂

 f 2 

z ( z t ) (11) 
t t 
A summary of the results of the stepwise-PLS metamodel

or each stage is presented in Table 4 . To verify the success of

he PLS orthogonalization, it is seen that all VIFs from Part 1

how no variance inflation, which indicates that the state space
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Table 5 

DACE based ADP implementation details for all runs. 

DoE for state space discretization 2000-point Sobol sequence 

Ozone threshold 0.125 ppm (modeled in penalty functions) 

Negative coefficients in ozone models Truncated to zero 

MARS approximation algorithm MARS ASR-II 

Maximum basis functions for MARS 2000 

Maximum order of interaction in MARS 2 

Number of candidate knots per dimension 35 

Non-linear optimization library NAG Fortran Mark 15 

Optimization starting points for stages 1 and 2 Midpoint, lower bound, and 10 random points 

Optimization starting points for stages 3 and 4 Midpoint and lower bound 

Running environment Workstation with dual 2.6 G AMD 

Atlon processors and 3 gigabyte memory 

Cent OS 4.9 

gcc version 3.4.6 20,060,404 (Red Hat 3. 4. 6–9) 
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multicollinearity has been eliminated. In Part 2, the emission de-

cision variables are not orthogonalized; however, we still see that

the DACE approach maintains VIFs that are very close to 1.0, indi-

cating nearly no multicollinearity or near orthogonality in Part 2. 

5. Computational results 

In order to solve the Atlanta ozone pollution, high-dimensional,

continuous-state SDP problem over a multicollinear state space,

the DACE based ADP algorithm described in Section 2.2 is em-

ployed with each of the three state transition metamodel types

described in Section 4 (high-VIF, low-VIF, and stepwise-PLS). The

resulting SDP control policies to control NO x emission reduction

decisions are then forward simulated within the Atlanta UAM, so

as to compare their performance. In Section 5.1 , details are pro-

vided on the DACE based ADP process for the Atlanta ozone pol-

lution SDP problem. In Section 5.2 , comparisons using the Atlanta

UAM are presented. Finally, in Section 5.3 , the accuracy of the state

transition metamodels is verified. 

5.1. DACE based ADP for the Atlanta ozone pollution SDP problem 

The solution of the ozone pollution problem using the DACE

based ADP method begins at the last stage and moves backward

until all the stages have been solved, as illustrated in Fig. 1 . Fol-

lowing Yang et al. (2009) , a 2000-point low-discrepancy sequence

( Sobol, 1967 ) is used as the experimental design to discretize the

state space, and MARS is used to approximate the FVFs. At each

discretization point, a commercial sequential quadratic program-

ming algorithm (NAG E04) is used to obtain an optimal solution

that corresponds to a point on the FVF. Unlike in the work of Yang

et al. (2009) , where the MARS approximations are allowed to have

negative values, the negative MARS values are truncated to zero in

the present study, because a negative cost is unrealistic. 

To reduce the possibility of achieving local optima, multiple

starting points are used. However, while the use of many starting

points increases the chance of approaching a global optimum, for

computational reasons, only two starting points (the midpoint and

the lower bound) and an additional ten random points between

the two are employed in the present study. Further, previous nu-

merical experiments have demonstrated that the use of multiple

starting points tends to produce better overall results compared

with the use of only one (the middle point), especially in time pe-

riods 1 and 2. Details on our DACE based ADP implementation are

given in Table 5 . Note that negative coefficients in the ozone meta-

models associated with the emission decision variables are trun-

cated to zero to avoid undesirable relationships that would cause

the optimization to increase emissions to reduce ozone. These un-

desirable relationships can occur when NO x levels are high, as ex-

plained in Yang et al. (2007) . As a consequence, by truncating these
egative coefficients to zero, the accuracy of the developed meta-

odels is degraded. 

Table 6 summarizes the running time and MARS approxima-

ions for the FVFs in each stage. The MARS algorithm running time

rows linearly with the number of input variables, but grows as

 cubic polynomial with the number of basis functions ( Friedman,

991 ). In general, a more complex function requires more MARS

asis functions. However, it is suspected that the more complex

ARS FVF approximations for stages 1 and 2 are due to the pres-

nce of more local optima in the FVF data used to fit MARS than

ue to the underlying true FVF having a significantly more complex

tructure. Please refer to Ariyajunya (2012 : Chapter 5) for some fig-

res of the MARS FVF approximation functions. It is also seen in

able 6 that the ADP solution time is much greater when using the

tepwise-PLS state transition metamodel. The computational time

or the ADP solution is primarily subject to the nonlinearity of the

tagewise optimization. In the case of the stepwise-PLS state tran-

ition metamodel, the direct relationships with the original state

ariables are no longer what is modeled. Instead, the orthogonal-

zed state variables possibly induce more complex and nonlinear

elationships that, in turn, create a more complex nonlinear opti-

ization. As seen in Eq. (1) , the state transition function is an inte-

ral part of the SDP optimization. Overall, the computational times

re mostly provided as informational and do not provide judgment

f the quality of an SDP control policy. Further, the ADP algorithm

s executed off-line prior to implementation, so the long compu-

ational times in Table 6 do not reflect an inability to employ the

esulting SDP control policies in real time. The re-optimization re-

uired to implement the SDP control policy executes within sec-

nds. In the next section, the SDP control policies for the high-VIF,

ow-VIF, and stepwise-PLS cases, represented by the MARS FVF ap-

roximations, are compared via results from a forward simulation

hat mimics real-time implementation. 

.2. Simulation results 

The re-optimization mentioned in Section 2.2 is used to sim-

late an SDP control policy forward in real time to generate the

pecific sequence of NO x emission reductions (point and non-point

ources) over the time periods. Each sequence of NO x emission re-

uctions is implemented in the Atlanta UAM to generate the re-

ulting maximum hourly-averaged ozone. If the SDP control pol-

cy performs well, then the UAM results should be similar to the

esults from the forward simulation using re-optimization. In this

ection, we study 50 hypothetical scenarios that were generated by

andomly varying the initial state conditions in the 4:0 0–7:0 0 AM

ime period from the actual ozone episode during July 29-August 1,

987, which is one of the worst on record. Please refer to Appendix

 in Ariyajunya (2012) for the 50 initial random state vectors. 
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Table 6 

Number of MARS basis functions and the running times. 

Model Stage No. of state 

variables 

No. of decision 

variables 

No. of basis 

functions selected 

by MARS 

Fitting MARS 

(hh:mm:ss) 

ADP solution 

(hh:mm:ss) 

Total running time 

(hh:mm:ss) 

High-VIF Stage 1 34 29 1296 30:01:51 0:59:24 31:01:23 

Stage 2 59 31 300 1:01:09 4:40:24 5:41:33 

Stage 3 82 30 227 0:54:26 0:23:25 1:17:51 

Stage 4 92 12 182 1:57:53 0:02:24 2:00:17 

Total time 33:55:19 6:05:45 40:01:04 

Low-VIF Stage 1 16 17 394 0:53:31 1:07:57 2:01:28 

Stage 2 23 9 1853 50:09:49 0:16:44 50:26:33 

Stage 3 21 9 104 0:02:47 0:05:21 0:08:08 

Stage 4 19 3 90 0:02:30 0:00:32 0:03:02 

Total time 51:08:37 1:30:34 52:39:11 

Stepwise-PLS Stage 1 25 29 1354 24:27:20 29:49:16 54:16:36 

Stage 2 23 28 964 7:57:58 27:54:13 35:52:11 

Stage 3 14 25 215 0:07:14 4:32:07 4:39:21 

Stage 4 9 7 72 0:00:32 0:03:58 0:04:30 

Total time 32:33:04 62:19:34 94:52:38 

Fig. 6. Hypothetical scenarios (50): average of the maximum hourly-averaged ozone levels from the nominal base case and from the ADP solutions, both simulated via the 

UAM and directly predicted using the three state transition metamodels, (a) high-VIF (HVIF), (b) low-VIF (LVIF), and (c) stepwise-PL S (PL S), along with the corresponding 

emission reductions (Emis. Red.). 
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The average emission reductions required by the SDP con-

rol policies are presented in Fig. 6 and summarized in Table 7 .

ig. 6 compares the trajectory for maximum hourly-averaged ozone

sing the nominal base case historical data and the average of

zone levels over 50 hypothetical scenarios simulated by the At-

anta UAM and predicted directly using the state transition meta-

odel. It can be seen in Fig. 6 that the nominal base case ozone

evel rises significantly above the EPA ozone standard of 0.125 ppm

y the last time period. The three re-optimized SDP control poli-

ies are clearly able to lower ozone levels. However, it can be seen

or the SDP control policy using the high-VIF metamodel, that the
AM-simulated ozone levels are noticeably below those predicted

y the high-VIF metamodel. By contrast, the SDP control poli-

ies using the low-VIF and stepwise-PLS metamodels that account

or the inherent state space multicollinearity yield UAM-simulated

zone levels that are very close to the predicted ones. As a conse-

uence, the SDP re-optimization using the FVF approximation de-

ived via the high-VIF metamodel selects much higher emission re-

uctions. Since emission control strategies can be costly, it is not

esirable to require more emission reduction than necessary. Al-

ernately, if the high-VIF metamodel had been similarly inaccurate,

ut in the opposite direction, under-estimating ozone instead of
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Table 7 

Hypothetical scenarios (50): average (Avg.) emission reductions (gm-mol) required by the SDP control policies, percent of the total 

nominal base case emissions, and corresponding average costs based on the weighted sum of emission reductions for the high-VIF, 

low-VIF, and stepwise-PLS state transition metamodels. 

High-VIF Low-VIF Stepwise-PLS 

Time period Avg. Reduction % Avg. Cost Avg. Reduction % Avg. Cost Avg. Reduction % Avg. Cost 

1 1667,499 55.1 45,864 811,482 26.8 19,822 1001,731 33.1 15,922 

2 1060,932 41.5 25,274 900,083 35.2 24,375 1065,100 41.6 22,803 

3 1630,610 62.7 32,337 997,836 38.4 27,692 1850,742 71.1 37,815 

4 735,351 23.8 35,883 473,427 15.3 27,612 813,879 26.4 36,057 

Daily 5094,392 45.2 139,358 3182,828 28.2 99,501 4731,453 42.0 112,597 

Fig. 7. Maximum UAM hourly-averaged ozone for all 50 hypothetical scenarios us- 

ing each state transition metamodel type: high-VIF, low-VIF, and stepwise-PLS. 
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Fig. 8. Weighted sum costs for all 50 hypothetical scenarios using each state tran- 

sition metamodel type: high-VIF, low-VIF, and stepwise-PLS. 
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over-estimating, then the ADP solution would have recommended

lower emission reductions, while risking exceedingly high ozone

levels. 

Fig. 7 shows the maximum hourly-averaged ozone levels from

the Atlanta UAM for each of the 50 hypothetical scenarios. Be-

cause the high-VIF state transition metamodel severely overesti-

mates ozone, as seen in Fig. 6 (a), higher emission reductions are

selected and the resulting UAM-simulated ozone levels are unnec-

essarily far below the EPA standard of 0.125 ppm in Fig. 7 . The

stepwise-PLS metamodel leads to emission controls with the best

performance in Fig. 7 , showing ozone levels at or just below the

EPA standard. While the low-VIF metamodel achieves an average

ozone level below the EPA standard in Fig. 6 (b), the ozone levels

across the 50 scenarios in Fig. 7 show several instances (10 out of

50) of exceeding the EPA standard. As reported by EPA (2019), such

exceedances can increase the frequency of asthma attacks and ag-

gravate lung diseases, which correlates with increased hospital ad-

missions and costs to the healthcare system. 

Table 7 provides a summary of the averages over the 50 sce-

narios for the emission reductions, percentages, and weighted sum

costs required by the ADP solutions for each of the three meta-

models in each of the time periods. The high-VIF metamodel leads

to the highest total emission reduction and the corresponding

highest weighted sum cost, due to the overestimation of the ozone

levels seen in Fig. 6 (a). The low-VIF metamodel leads to the lowest

total emission reduction and the lowest weighted sum cost. Using

the stepwise-PLS metamodel, the total emission reduction is about

48% higher than using the low-VIF metamodel, but the weighted

sum cost is still only about 13% higher. In other words, while us-

ing the stepwise-PLS metamodel leads to much higher emission re-

ductions, they are located at lower-weighted emission sources than

those resulting from using the low-VIF metamodel. Using the high-

IF metamodel, the total emission reduction is about 60% higher

than using the low-VIF metamodel, and the weighted sum cost is

40% higher. Fig. 8 shows the weighted sum costs for each of the 50
ypothetical scenarios. It is clear that the high-VIF method results

n higher weighted sum costs, uniformly across all the scenarios.

he costs for the low-VIF and stepwise-PLS methods exhibit some

verlap. However, while the low-VIF method leads to lower costs,

n average, the stepwise-PLS method leads to lower variance on

he costs, indicating the stepwise-PLS method yields a less risky

more stable) SDP control policy. Markowitz (1952) pioneered the

oncept of higher variance being associated with a riskier solution

hat is undesirable in optimization. In addition, Fig. 7 shows that

he low-VIF metamodel leads to several scenarios with ozone lev-

ls above the EPA standard, indicating that the low-VIF emission

ontrols are insufficient in these scenarios. Hence, if we only con-

ider the emission cost objective, the low-VIF metamodel leads to

he best performing SDP control policy. However, if we consider

oth the emission cost and air quality objectives, the stepwise-

LS metamodel leads to the best performing SDP control policy

ith ozone levels at or below the EPA standard, achieved with

ow weighted sum cost. Overall, both the low-VIF and stepwise-

LS metamodels lead to superior SDP control policies compared

o the high-VIF case that ignores multicollinearity, demonstrating

he negative impact that multicollinearity can have on SDP con-

rol policies and the success of both low-VIF and orthogonalization

pproaches in mitigating this impact. 

The Atlanta UAM 40 × 40 grid covering the metropolitan region

s aggregated into a 5 × 5 grid, as shown in Figs. 9 to 12 . We refer

o these grid squares with the notation ( i, j), for i = 1, 2, 3, 4, 5 and

j= 1, 2, 3, 4, 5, where grid square (5, 1) is at the bottom right. With

he initial state conditions from the historical base case on July 31

s an example, Figs. 9 through 12 spatially illustrate the magni-

ude and location of the emission reductions for the SDP control

olicies using each of the three metamodels in each of the four

DP stages, where point source emission reductions are combined

ith non-point source emission reductions based on location. The

ifferent sources of emissions are weighted, as explained earlier in

q. (3) , such that higher nominal emissions lead to higher weights

n the SDP cost function. The highest nominal emissions are in

he center of the region, grid square (3, 3). The second highest
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Fig. 9. Emission reductions during 7:00 AM – 10:00 AM within each grid square for the real Atlanta scenario using (a) high-VIF, (b) low-VIF, and (c) stepwise-PLS metamodels. 

Fig. 10. Emission reductions during 10:00 AM – 1:00 PM within each grid square for the real Atlanta scenario using (a) high-VIF, (b) low-VIF, and (c) stepwise-PLS meta- 

models. 

Fig. 11. Emission reductions during 1:00 PM – 4:00 PM within each grid square for the real Atlanta scenario using (a) high-VIF, (b) low-VIF, and (c) stepwise-PLS metamodels. 
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ource, at about 1/4 of the highest, is one space in front of cen-

er, grid square (3, 2). The next two highest sources, each at about

/2 of the second highest, are grid square (4, 3) to the right of cen-

er and a point source located on the left edge in grid square (1,

). It can be seen in Fig. 9 that the high-VIF metamodel yields a

igh emission reduction in the most expensive center grid square,

hile the low-VIF and stepwise-PLS metamodels do not yield no-

iceable emission reductions in the center. In the second time pe-

iod, covering the lunch hour, Fig. 10 shows all three metamod-

ls yield emission reductions in the four expensive grid squares.

owever, the low-VIF and stepwise-PLS metamodels yield gener-

lly lower emission reductions, compared to the high-VIF meta-

odel, In the third time period, covering mid-afternoon, the three

etamodels yield similar emission reduction spatial patterns in

ig. 11 . Finally, in the last time period, covering the evening rush

our, all three metamodels focus emission reductions in the center,

ut the low-VIF metamodel has the lowest amount, as shown in

ig. 12 . 

.3. Verification of metamodels 

The most desirable SDP control policy for the Atlanta ozone

ollution SDP problem is that which requires the least emission
eductions to maintain the maximum ozone level within the EPA

tandard. However, the numerical results of the SDP process are

ffected by the accuracy of the state transition metamodels. To

ssess accuracy, the predicted ozone levels using the metamod-

ls are compared to the UAM-simulated ozone levels using the

DP control policies obtained for the 50 hypothetical scenarios in

ection 5.2 . Recall, as stated in Section 5.1 , that the accuracy of the

eveloped metamodels is degraded due to truncation of negative

oefficients. The average percent errors with respect to each moni-

oring station are shown in Fig. 13 (a) and with respect to each SDP

tage are presented in Fig. 13 (b). It is seen that the high-VIF meta-

odel has the highest average percent errors in most cases, indi-

ating the worst performance overall. In general, the metamodels

verestimate ozone levels, on average, although the low-VIF meta-

odel does underestimate ozone at the stage 4 by an average per-

ent error of 1.47%. Underestimation is riskier in controlling ozone

ince it could lead to insufficient emission control, as seen in Fig.

 . The stepwise-PLS metamodel has clearly larger average percent

rror than the low-VIF metamodel in three cases, South Dekalb,

ucker, and stage 1. In stage 1, the stepwise-PLS metamodel has

 higher percent error than the high-VIF metamodel. In summary,

oth the low-VIF and stepwise-PLS metamodels are much more

table than the high-VIF metamodel. 
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Fig. 12. Emission reductions during 4:00 PM – 7:00 PM within each grid square for the real Atlanta scenario using (a) high-VIF, (b) low-VIF, and (c) stepwise-PLS metamodels. 

Fig. 13. Average percent error between the metamodel predictions and UAM-simulated ozone for the 50 hypothetical scenarios by (a) stations and (b) stages. 
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6. Concluding remarks 

In this study, we focus on the issue of high state space mul-

ticollinearity for a ground-level ozone pollution SDP problem for

Atlanta, Georgia. The drawbacks of ignoring high state space mul-

ticollinearity in ADP are demonstrated, and two state transition

modeling approaches are presented, combined with DACE based

ADP, to appropriately address the state space multicollinearity. An

important goal of our study is to raise the awareness that multi-

collinear state spaces require care when modeling in ADP. 

For the high-dimensional, continuous-state Atlanta ozone pollu-

tion SDP problem, we employed regression techniques to construct

state transition metamodels of the Atlanta UAM over the multi-

collinear state space, where the high-VIF metamodel ignores the

multicollinearity, the low-VIF metamodel follows best practices for

handling multicollinearity, and the stepwise-PLS model transforms

the multicollineaar state space to an orthogonal one. The high-

IF metamodel leads to clearly inferior SDP performance compared

to the low-VIF and stepwise-PLS metamodels. While the low-VIF

metamodel produces the most cost-efficient ADP solutions ( Fig.

8 ), there are several cases in which the emission reductions are

insufficient, leading to UAM-simulated ozone levels that exceeds

the EPA standard by a small amount ( Fig. 7 ). The stepwise-PLS

metamodel produces ADP solutions with weighted sum cost about

13% higher on average than using the low-VIF metamodel and

UAM-simulated ozone levels that comply with the EPA standard

( Fig. 7 ). From the human health aspect, this is important since the

exceedance of the EPA ozone level is known to be harmful for the

vulnerable groups, such as children, the elderly, and patients with

lung diseases. 

With regard to recommendations and future work, both the

low-VIF approach and the stepwise-PLS approach are viable for

handling state space multicollinearity. The disadvantage of the

low-VIF approach is that best practices are still a rather manual

process and are not guaranteed to achieve a high quality low-VIF
etamodel. If one is experienced with building low-VIF metamod-

ls, and a high quality low-VIF metamodel can be constructed, then

e would deem the low-VIF approach to be more straightforward

o implement for SDP. While an orthogonalization approach can be

utomated, the disadvantage is the challenge of modeling the state

ransition relationships over the orthogonalized state space, which

ay be more complex and nonlinear than the relationships over

he original state space. However, the orthogonalization approach

uarantees an orthogonal (uncorrelated) representation of the state

pace and performed well for the Atlanta case study. Future work

s needed to further study the challenge of state transition mod-

ling. In this work, we are able to make use of the Atlanta UAM

imulation model to provide data for state transition modeling, but

n some applications, real world data may be used, which creates

dditional modeling challenges ( LeBoulluec et al., 2018 ). 
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