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ANon-Uniform Concentration Inequality
for a Random Permutation Sum

PETCHARAT RATTANAWONG

Faculty of Science and Social Sciences, Burapha University Sakaeo
Campus, Sakaeo, Thailand

The purpose of this article is to give a non-uniform concentration inequality of a
random permutation sum, Wn =

∑n
i=1 Y�i� ��i��, where � = ���1�� ��2�� � � � � ��n��

is a uniformly distributed random permutation of 1� 2� � � � � n and Y�i� j�� i� j =
1� 2� � � � � n are random variables such that Y�i� j�′s and � all are stochastically
independent. To do this, we assume the finiteness of third moment.
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1. Introduction and Main Result

Let Y�i� j�� i� j = 1� 2� � � � � n, be independent random variables with finite third
moment and � be a random permutation on �1� 2� � � � � n� such that Y�i� j�′s and � all
are stochastically independent. In this article, we concern with Wn =

∑n
i=1 Y�i� ��i��,

which is called a random permutation sum. Several articles have mentioned the
behavior of the limit of Wn. Von Bahr (1976) and Ho and Chen (1978) showed
that, under some appropriate conditions, the distribution of Wn converges to the
standard normal distribution. Bolthausen (1984) gave a Berry-Esseen-type bound
by using an inductive approach of Stein’s method. Neammanee and Suntornchost
(2005) applied a concentration inequality approach to obtain the uniform rate
of convergence under the finiteness of third moments. In that work, they used
a uniform concentration inequality of Wn as an important tool. In this article,
we apply the idea from Laipaporn and Neammanee (2006) and Laipaporn and
Sungkamongkol (2009) to give a non-uniform concentration inequality of Wn.

Let X be a random variable. The function QX � 	0��� → � defined by

QX�
� = sup
x

P�x ≤ X ≤ x + 
�
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is called a uniform (Lévy) concentration function of X and the function QX � �×
	0��� → � defined by

QX�x� 
� = P�x ≤ X ≤ x + 
�

is called a non-uniform (Lévy) concentration function of X.
Throughout this article, we assume that VarWn = 1,

E�Y�i� j��3 ≤ �� 1 ≤ i� j ≤ n�

n∑
ij=1

EY�i1� i2� = 0 for j = 1� 2� (1.1)

and let

�3 =
1
n

n∑
i=1

n∑
j=1

E�Y�i� j��3�

Neammanee and Suntornchost (2005) gave a uniform concentration inequality
as follows.

Theorem 1.1. If �3 <
1

350 and n ≥ 32, then

P�a ≤ Wn ≤ a+ 
� ≤ 2
+ 78�3

for any real numbers a� 
 with 
 ≥ 0.

This article gives a non-uniform concentration inequality of Wn.

Theorem 1.2. For n ≥ 32, then

P�z ≤ Wn ≤ z+ 
� ≤ �189�3936+ 79�6348n�23�

�1+ z�3

+ �400�7874+ 159�2696n�23��3
�1+ z�2

+ 48�29√
n�1+ z�2

+ C�
3
4
3 �1+ n�23�

1
4

n
5
12

+ 113�14�3√
n− 1

+ C

n

for any positive real numbers z� 
, and a constant C. Furthermore, if �3 ∼ 1√
n
, then for

n ≥ 32,

P�z ≤ Wn ≤ z+ 
� ≤ 269�0284

�1+ z�3

+ 608�347

�1+ z�2
√
n
+ O

(
1

n
19
24

)
�

In this article, auxiliary results are given in Sec. 2 and the main theorem is
provided in Sec. 3.
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2. Auxiliary Results

Lemma 2.1. Assume that �1+ z�2�3 <
1
4 , �3 ≤ 1

11 and n ≥ 32, then

E

[ n∑
i=1

n∑
k=1

Ŷz�i� k�

]4

≤ 0�2333n4�

where Ŷz�i� j� = Y�i� j����Y�i� j�� ≤ 1+ z�.

Proof. Observe that

E

[ n∑
i=1

n∑
k=1

Ŷz�i� k�

]4

= A1 + A2 + A3 + A4 + A5

where

A1 =
n∑

i=1

n∑
k=1

EŶ 4
z �i� k�

A2 =
∑
i�k

∑
l�m

�l�m�	=�i�k�

EŶ 3
z �i� k�Ŷz�l�m�

A3 =
∑
i�k

∑
l�m

�l�m�	=�i�k�

EŶ 2
z �i� k�Ŷ

2
z �l�m�

A4 =
∑
i�k

∑
l�m

�l�m�	=�i�k�

∑
p�n

�p�n�	=�i�k�
�p�n�	=�l�m�

EŶ 2
z �i� k�Ŷz�l�m�Ŷz�p� n�

A5 =
∑
i�k

∑
l�m

�l�m�	=�i�k�

∑
p�n

�p�n�	=�i�k�
�p�n�	=�l�m�

∑
r�s

�r�s�	=�i�k�
�r�s�	=�l�m�
�r�s�	=�p�n�

EŶz�i� k�Ŷz�l�m�Ŷz�p� n�Ŷz�r� s��

Moreover,

�A1� ≤ �1+ z�
n∑

i=1

n∑
k=1

E�Y�i� k��3 = �1+ z�n�3� (2.1)

Note that for ai > 0 and i > 0� i ∈ �1� 2� � � � � n� with 1 + 2 + · · · + n = 1,

a
1
1 a

2
2 · · · an

n ≤ 1a1 + 2a2 + · · · + nan� (2.2)

and for any non negative integer m and positve integers n and r,

E�Ym�i1� i2�Y
n
z �i1� i2�� ≤ E�Ym�i1� i2�Y

n
z �i1� i2��

�Yz�i1� i2��r
�1+ z�r

≤ E�Y�i1� i2��m+n+r

�1+ z�r
� (2.3)
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From (1.1),(2.2), (2.3), and the fact that Ŷz = Y − Yz where Yz�i� j� = Y�i� j�
���Y�i� j�� > 1+ z�, we can show that

�A2 + A3 + A4 + A5� ≤ 2�1+ z�n�3 + 7n2�23 + 2n2 + 10n4�23

+ 19�1+ z�n3�3 + 3n3�33 + n4�43�

Hence, if �1+ z�2�3 <
1
4 , �3 ≤ 1

11 and n ≥ 32, then this lemma is proved. �

In the rest of this article, we use the following system given by Ho and
Chen (1978) and Neammanee and Suntornchost (2005). Let I� K� L�M be uniformly
distributed random variables on �1� 2� � � � � n� such that:

�I� K� L�M� is independent of Y�i� j�′s�

	�I� K�� �L�M�� are uniformly distributed on

�	�i� k�� �l�m�� �� i� k� l�m = 1� 2� � � � � n and i 	= k� l 	= m and �i� k� 	= �l�m���

�I� K�� �L�M� and � are mutually independent.

Now, we define some notations:

W̃z = Wz − Ŝ1�z − Ŝ2�z + Ŝ3�z + Ŝ4�z

where

Ŝ1�z = Ŷz�I� ��I��� Ŝ2�z = Ŷz�K� ��K���

Ŝ3�z = Ŷz�I� ��K��� Ŝ4�z = Ŷz�K� ��I���

It is well-known that W̃z and Wz is an exchangeable pair, i.e., for every a� b ∈ �

P�W ≤ a� W̃ ≤ b� = P�W ≤ b� W̃ ≤ a�

and Ŝi�z for i = 1� 2� 3� 4 are identically distributed.

Lemma 2.2. Let � = max� n4E�W̃z −Wz�3� �3� and

U� =
n∑

i=1

∑
k

k 	=i

�Ŷz�i� ��i��+ Ŷz�k� ��k��− Ŷz�i� ��k��− Ŷz�k� ��i���

×min

��
n∑

i=1

∑
k

k 	=i

�Ŷz�i� ��i��+ Ŷz�k� ��k��− Ŷz�i� ��k��− Ŷz�k� ��i���
 �

Then:

1. If �3 ≤ 1
11 and n ≥ 32, EU� ≥ 2�2728�n− 1�− 5�4778;

2. If �1+ z�2�3 <
1
4 and n ≥ 32, VarU� ≤ 23�673n2�3

�1+z�2
.
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Proof. 1. We observe that

E�W̃z −Wz�
2 =

4∑
k=1

ES2
k + 2E�S1S2 − S1S3 − S1S4 − S2S3 − S2S4 + S3S4�

− 2E�S1 + S2 − S3 − S4��S1�z + S2�z − S3�z − S4�z�

+ E�S1�z + S2�z − S3�z − S4�z�
2

and

ES2
1 = 1

n

n∑
i=1

EY 2�i� ��i��

= 1
n

[
EW 2 −

n∑
i=1

∑
j

j 	=i

EY�i� ��i��Y�j� ��j��

]

= 1
n
− 1

n2�n− 1�

n∑
i=1

∑
j

j 	=i

n∑
l=1

∑
m

m	=l

EY�i� l�EY�j�m�

= 1
n
− 1

n2�n− 1�

n∑
i=1

n∑
l=1

�EY�i� l��2�

Let �2 = 1
n
√
n

∑n
i=1

∑n
j=1 E�Y�i� j��2� Since S1� S2� S3� S4 are identically distributed,

4∑
k=1

ES2
k = 4

n
− 4

n2�n− 1�

n∑
i=1

n∑
l=1

�EY�i� l��2

≥ 4
n
− 4�2√

n�n− 1�

≥ 4
n
− 4

n�n− 1�
�

where we used �2 ≤ 1√
n
(Neammanee and Rerkruthairat, 2012) in the last inequality.

From (1.1), we can show that

2E�S1S2 − S1S3 − S1S4 − S2S3 − S2S4 + S3S4�

− 2E�S1 + S2 − S3 − S4��S1�z + S2�z − S3�z − S4�z�

= 2
{

2
n2�n− 1�2

n∑
i=1

n∑
l=1

�EY�i� l��2 + 4
n2�n− 1�

n∑
i=1

n∑
l=1

�EY�i� l��2
}

− 2
{
4
n2

n∑
i=1

n∑
j=1

EY�i� j�Yz�i� j�+
4

n2�n− 1�2

n∑
k=1

n∑
m=1

EY�k�m�EYz�k�m�

+ 8
n2�n− 1�

n∑
i=1

n∑
m=1

EY�i�m�EYz�i�m�

}
�
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Thus,

E�W̃z −Wz�
2 ≥ 4

n
− 4

n�n− 1�

+ 2
{

2
n2�n− 1�2

n∑
i=1

n∑
l=1

�EY�i� l��2 + 4
n2�n− 1�

n∑
i=1

n∑
l=1

�EY�i� l��2
}

− 2
{
4
n2

n∑
i=1

n∑
j=1

EY�i� j�Yz�i� j�+
4

n2�n− 1�2

n∑
k=1

n∑
m=1

EY�k�m�EYz�k�m�

+ 8
n2�n− 1�

n∑
i=1

n∑
m=1

EY�i�m�EYz�i�m�

}
�

Since

4
n2

n∑
i=1

n∑
j=1

EY�i� j�Yz�i� j�+
4

n2�n− 1�2

n∑
k=1

n∑
m=1

EY�k�m�EYz�k�m�

+ 8
n2�n− 1�

n∑
i=1

n∑
m=1

EY�i�m�EYz�i�m�

≤ 4
n2

n∑
i=1

n∑
j=1

E�Y�i� j��3
�1+ z�

+ 4
n2�n− 1�2

n∑
k=1

n∑
m=1

E�Y�k�m��3
�1+ z�

+ 8
n2�n− 1�

n∑
i=1

n∑
m=1

E�Y�i�m��3
�1+ z�

≤ 4�3
n

+ 4�3
n�n− 1�2

+ 8�3
n�n− 1�

≤ 0�3636
n

+ 0�7389
n�n− 1�

�

it follows that

E�W̃z −Wz�
2 ≥ 4

n
− 4

n�n− 1�
− 2

{
0�3636

n
+ 0�7389

n�n− 1�

}
= 3�2728

n
− 5�4778

n�n− 1�
�

From the fact that min�a� b� ≥ b − b2

4a for any a� b > 0, and note that for n ≥ 32,
we can show that

EU� = n�n− 1�E�W̃z −Wz�min��� �W̃z −Wz��

≥ n�n− 1�
{
E�W̃z −Wz�2 −

1
4�

E�W̃z −Wz�3
}

= n�n− 1�E�W̃z −Wz�2 −
n�n− 1�

4�
E�W̃z −Wz�3
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≥ n�n− 1�
[
3�2728

n
− 5�4778

n�n− 1�

]
− �n− 1�

= 2�2728�n− 1�− 5�4778�

2. By using the idea from Lemma 2.5 in Laipaporn and Neammanee (2006),
we can show that

VarU� ≤
23�673n2�3
�1+ z�2

�
�

3. Proof of the Main Result

Let Wz =
∑n

i=1 Ŷz�i� ��i��. Note that

P�z ≤ Wn ≤ z+ 
� ≤ P�Wn 	= Wz�+ P�z ≤ Wz ≤ z+ 
� (3.1)

and from inequality (3.2) in Neammanee and Rattanawong (2009), we have

P�Wn 	= Wz� ≤
�3

�1+ z�3
� (3.2)

Hence, to prove Theorem 1.2, it suffices to bound P�z ≤ Wz ≤ z+ 
�.
Assume that n ≥ 32. If �1+ z�2�3 ≥ 1

4 , by using the same argument as
Lemma 2.1(3) in Neammanee and Rerkruthairat (2012), we obtain that

EW 4
z ≤ 1�7963+ 12�6616�1+ z��3 + 0�0125n�23� (3.3)

Thus,

P�z ≤ Wz ≤ z+ 
� ≤ P�z ≤ Wz�

= P�1+ z ≤ Wz + 1�

≤ E�Wz + 1�4
�1+ z�4

≤ 8EW 4
z

�1+ z�4
+ 8

�1+ z�4

≤ 22�3704
�1+ z�4

+ 101�2928�1+ z��3
�1+ z�4

+ 0�1n�23
�1+ z�4

≤ 190�7744�3
�1+ z�2

+ 0�4n�33
�1+ z�2

� (3.4)

Suppose that �1+ z�2�3 <
1
4 and �3 ≤ 1

11 . Let g � � → � be defined by

g�t� =


0 if t < z− ��

�1+ t + ��3�t − z+ �� if z− � ≤ t ≤ z+ 
+ ��

�1+ t + ��3�
+ 2�� if t > z+ 
+ ��
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By the same argument as (1) in Laipaporn and Sungkamongkol (2009), we can show
that

P�z ≤ Wz ≤ z+ 
� ≤ 4
�1+ z�3

EWzg�Wz�−
4

�1+ z�3
�g�Wz�

+ P�U� ≤ n− 1�� (3.5)

Note that, from Lemma 2.2,

EU� ≥ 2�2728�n− 1�− 5�4778

and

VarU� ≤
23�6735n2�3
�1+ z�2

�

From the above facts, we can conclude that

P�U� ≤ n− 1� = P�EU� − U� ≥ 1�2728�n− 1�− 5�4778�

≤ VarU�

�1�2728�n− 1�− 5�4778�2

≤ VarU�

1�2012�n− 1�2

≤ 21�0002�3
�1+ z�2

� (3.6)

Using the same argument as Lemma 2.1(2) in Neammanee and Rerkruthairat (2012)
we have EW 2

z < 1�0645, and from (3.3) in case of �1+ z�2�3 <
1
4 , we also obtain that

EW 4
z ≤ 5�8177+ 2�8441n�23. Thus, from the definition of g

EWzg�Wz� ≤ �
+ 2�3�E�Wz���1+ �3�+Wz�3
≤ 4�
+ 2�3�E�Wz���1+ �3�

3 + �Wz�3�
≤ 5�193�
+ 2�3��EW

2
z �

1/2 + 4�
+ 2�3�EW
4
z

≤ �28�6286+ 11�3764n�23��
+ 2�3�� (3.7)

By the same argument as Lemma 2.1(1) in Neammanee and Rerkruthairat (2012),

E

[ n∑
i=1

n∑
k=1

Ŷz�i� k�

]2

≤ n+ n2�23�

As a result of the above fact and Lemma 2.1,

��g�Wz�� =
∣∣∣∣∣1nEg�Wz�

n∑
i=1

n∑
k=1

Ŷz�i� ��k��

∣∣∣∣∣
≤ 1

n
�
+ 2�3�E

∣∣∣∣∣�1+ �3 +Wz�
3

n∑
i=1

n∑
k=1

Ŷz�i� ��k��

∣∣∣∣∣
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≤ 4
n
�
+ 2�3�E

∣∣∣∣∣�1+ �3�
3

n∑
i=1

n∑
k=1

Ŷz�i� ��k��

∣∣∣∣∣
+ 4�
+ 2�3�E�Wz�3

∣∣∣∣∣1n n∑
i=1

n∑
k=1

Ŷz�i� ��k��

∣∣∣∣∣
≤ 4�
+ 2�3��1+ �3�

3 1
n

{
E

[ n∑
i=1

n∑
k=1

Ŷz�i� k�

]2
} 1

2

+ 4�
+ 2�3��EW
4
z �

3
4

E

∣∣∣∣∣1n n∑
i=1

n∑
k=1

Ŷz�i� k�

∣∣∣∣∣
4


1
4

≤ 1�0334�
+ 2�3�+ 3�
+ 2�3��EW
4
z �

+ �
+ 2�3�

E

∣∣∣∣∣1n n∑
i=1

n∑
k=1

Ŷz�i� k�

∣∣∣∣∣
4


≤ �18�7198+ 8�5323n�23��
+ 2�3�� (3.8)

Thus, from (3.5)–(3.8),

P�z ≤ Wz ≤ z+ 
� ≤ �189�3936+ 79�6348n�23�

�1+ z�3

+ �399�7874+ 159�2696n�23��3
�1+ z�2

� (3.9)

Suppose that �1+ z�2�3 <
1
4 and �3 >

1
11 . Hence, 1

�1+z�2
> 4

11 . From this fact and the
result of Neammanee and Rerkruthairat (2012) as follows:

sup
z∈�

�P�Wn ≤ z�−��z�� ≤ 69�58�3 +
8�78√

n
+ C1�

3
4
3 �1+ n�23�

1
4

n
5
12

+ 56�57�3√
n− 1

+ C1

n

where C1 is a constant and � is the standard normal distribution, we have

P�z ≤ Wn ≤ z+ 
� ≤ �P�Wn ≤ z+ 
�−��z+ 
�� + �P�Wn < z�−��z��
+ ���z+ 
�−��z��

≤ 139�16�3 +
17�56√

n
+ C2�

3
4
3 �1+ n�23�

1
4

n
5
12

+ 113�14�3√
n− 1

+ C2

n
+ 


ez2/2

≤ 382�69�3
�1+ z�2

+ 48�29√
n�1+ z�2

+ C2�
3
4
3 �1+ n�23�

1
4

n
5
12

+ 113�14�3√
n− 1

+ C2

n
+ C3


�1+ z�3
(3.10)
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where C2 is a constant and

C3 =
{
13� 0 ≤ x ≤ 1�3

5�1813� x > 1�3�

Hence, from (3.1), (3.2), (3.4), (3.9), and (3.10), the main theorem is obtained.
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