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Frequent-regular pattern mining has attracted recently many works. Most of the approaches focus on dis-
covering a complete set of patterns under the user-given support and regularity threshold constraints.
This leads to several quantitative and qualitative drawbacks. First, it is often difficult to set appropriate
support threshold. Second, algorithms produce a huge number of patterns, many of them being
redundant. Third, most of the patterns are of very small size and it is arduous to extract interesting rela-
tionship among items. To reduce the number of patterns a common solution is to consider the desired
number k of outputs and to mine the top-k patterns. In addition, this approach does not require to set
a support threshold. To cope with redundancy and interestingness relationship among items, we suggest
to focus on closed patterns and introduce a minimal length constraint. We thus propose to mine the top-k
frequent-regular closed patterns with minimal length. An efficient single-pass algorithm, called TFRC-Mine,
and a new compact bit-vector representation which allows to prune uninteresting candidate, are
designed. Experiments show that the proposed algorithm is efficient to produce longer – non redundant
– patterns, and that the new data representation is efficient for both computational time and memory
usage.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Frequent and regular (or periodic) pattern mining aims to
detect the occurrence behavior of patterns i.e. whether a pattern
occurs frequently and regularly, or mostly in a specific time inter-
val in a database (Tanbeer, Ahmed, Jeong, & Lee, 2009). It can be
applied to many fields such as genetic data analysis (Glynn,
Chen, & Mushegian, 2006), manufacturing (Engler, 2008), behavior
analysis of moving objects (Li, Ding, Han, Kays, & Nye, 2010),
elderly daily habits’ monitoring (Soulas, Lenca, & Thépaut, 2013),
medical data (Khaleel, Dash, Choudhury, & Khan, 2015; Luth
et al., 2008), game player behavior (Soulas & Lenca, 2015).
Within this framework, a pattern is interesting if it is frequent
and regular. The user has thus to specify a support threshold (as
for association rules mining) and a regularity threshold (i.e. the
maximum interval at which the pattern appear/disappear).

However, it is well-known that the classical frequent based
framework leads to two problems. First, setting the minimum sup-
port threshold is not easy. Second, it tends to generate a large num-
ber of patterns, most of them being of poor interest. To cope with
these issues, asking the number of desired outputs is considered
easier (Fu, Kwong, & Tang, 2000). In addition, with such an
approach, additional constraints (such as closed property and min-
imum pattern length) can be incorporated (Han, Wang, Lu, &
Tzvetkov, 2002). It is benefit from both usability and efficiency
point of views.

In the applications mentioned above, the user may prefer to
focus first on regularity of the patterns and on a reduced set of
results. Amphawan, Lenca, and Surarerks (2009) thus introduced
the problem of mining top-k frequent-regular patterns where the
user does not need to specify a support threshold but may only
focus on the number k of desired results and the regularity of pat-
terns. However, this approach may generate redundant and/or
short patterns. Thus, interesting patterns may be lost mainly
because of redundant patterns, and especially the small ones.
Indeed, these patterns tend to have more chance to appear in the
top-k patterns. An efficient solution consists of mining closed pat-
terns of minimum length (Han et al., 2002). Closed patterns will
reduce redundancy. Minimum length constraint will increase the
number of items in a pattern and thus may reveal interesting rela-
tions among them. In addition, it will tend to favor patterns with
lower support which are often more interesting than very frequent
–well known– patterns. Last, both parameters k and the minimal
length of patterns are easier to set than the support threshold.
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We thus propose to mine the top-k frequent-regular closed pat-
terns with minimal length. An efficient single-pass algorithm, called
TFRC-Mine, and a new compact bit-vector representation which
allows to prune uninteresting candidate, are designed.
Experiments show that the proposed algorithm is efficient to pro-
duce longer –non redundant– patterns, and that the new data rep-
resentation is efficient for both computational time and memory
usage.

The rest of the paper is organized as follows. Related works are
presented in Section 2. Preliminary definitions and problem state-
ment are given in Section 3. The new concise bit-vector representa-
tion is described in Section 4. TFRC-Mine algorithm is detailed in
Section 5. Experiments and discussion are given in Section 6. Last,
we conclude in Section 7.
2. Related works

Since Tanbeer et al. (2009) pointed out that regularity of occur-
rence can be of great interest, regular pattern mining has attracted
several works particularly in transactional database and data
streams. In addition, several ways of characterizing regularity
(sometimes called periodicity by some authors) have been pro-
posed. We here briefly review main related works.

Rashid, Karim, Jeong, and Choi (2012) proposed a
pattern-growth based approach to mine frequent patterns that
occur after regular intervals in a transactional database. In this
work, the temporal regularity measure is based on the variance
of interval time between pattern occurrences. Sreedevi and
Reddy (2013) proposed a method to mine regular-closed itemsets
in transactional database by a using vertical data format. It gener-
ates the complete set of regular-closed patterns for the user-given
regularity and support thresholds.

Focusing on rare periodic-frequent patterns, Kiran and Reddy
(2010) and Surana, Kiran, and Reddy (2012) proposed an efficient
pattern-growth based algorithm and a methodology to dynami-
cally specify the maximum periodicity threshold for each pattern.
They thus use multiple support and regularity thresholds, one for
each item. Kiran and Kitsuregawa (2015) proposed a new class of
user-interest-based patterns named chronic-frequent patterns. A
frequent pattern is said to be chronic if it has sufficient number
of cyclic repetitions in a temporally ordered transactional
Table 1
Details of previous approaches.

References rs rt

Rashid et al. (2012) Yes Yes (variance)
Sreedevi and Reddy (2013) Yes Yes
Kiran and Reddy (2010) Yes (multiple) Yes (multiple)
Surana et al. (2012) Yes (multiple) Yes (multiple)
Kiran and Kitsuregawa (2015) Yes Yes
Tanbeer et al. (2010a) No Yes
Kumar and Kumari (2012) No Yes
Tanbeer et al. (2010b) No Yes
Kiran and Kitsuregawa (2014) Yes Yes
Amphawan et al. (2010) Yes Yes
Kiran and Kitsuregawa (2013) Yes Yes
Amphawan et al. (2009) No (top-k) Yes
Amphawan et al. (2012a) No (top-k) Yes
Amphawan et al. (2012b) No (top-k) Yes

Our proposition No (top-k) Yes

rs: require a support threshold.
rt: require a temporal (regularity or periodicity) threshold.
rl: use an additional measure l (with or without a threshold for l).
Closed property: remove redundancy with the closed patterns.
Minimum length: take into account the minimum length of patterns for interestingnes
database. To assess the interestingness of a frequent pattern the
authors propose an anti-monotone periodic-recurrence measure,
based on the number of cyclic repetitions in the database, which
allows to make chronic-frequent pattern mining practicable with
large databases. However, three thresholds, one for the support,
one for the periodicity and one to decide if a pattern is chronic
or not, are required.

Tanbeer, Ahmed, and Jeong (2010a) proposed a single-pass tree
structure to capture streams contents in a compact manner and a
pattern-growth based mining technique on the tree to mine the
regular patterns in stream data. The temporal regularity measure
is here based on a user-given regularity threshold as defined in
Tanbeer et al. (2009). Kumar and Kumari (2012) proposed to mine
regular frequent patterns in data streams with the sliding window
technique using the vertical data format. The proposed algorithm
satisfies downward closure property and is thus efficient. Also,
because of the occurrence characteristic of patterns may change
with the update of a database, Tanbeer, Ahmed, and Jeong
(2010b) proposed a tree structure and pattern-growth based
approaches to mine regular patterns in incremental transactional
databases. They use a regularity threshold but do not consider
the support. Kiran and Kitsuregawa (2014) proposed a greedy
search on a pattern’s tid-list to determine the periodic interesting-
ness of a pattern. Pruning of the non-periodic-frequent patterns is
done with a sub-optimal solution, while the periodic-frequent pat-
terns are found with a global optimal solution. The algorithm
requires both support and regularity thresholds.

As shown in Table 1 most of algorithms to mine regular and/or
periodic patterns described above need to set a support threshold.
To avoid this difficult task and to control the number of patterns
mined Amphawan et al. (2009) introduced the problem of mining
top-k frequent-regular patterns where the user needs only to spec-
ify the number k of desired patterns and the regularity threshold. A
compressed tid-sets representation was used in Amphawan, Lenca,
and Surarerks (2012a). An efficient pruning strategy based on sup-
port estimation and on a database partitioning technique is pro-
posed in Amphawan, Lenca, and Surarerks (2012b). All the above
algorithms mine a top-k list with a best-first strategy.

Table 1 summarizes the principal characteristics of related
approaches described above. It shows that most of them produce
redundant patterns and do not consider their minimal length.
They thus limit the overall quality of the set of mined patterns.
rl Closed property Minimum length

variance No No
No Yes No
No No No
No No No
periodic-recurrence No No
No No No
No No No
No No No
No No No
No No No
periodic-ratio No No
No No No
No No No
No No No

No Yes Yes

s consideration.
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Table 1 also shows that very few works consider other measures
beyond the support and regularity. A perspective will be to con-
sider interestingness measures for evaluating and selecting tempo-
ral patterns, but not necessary regular or periodic, as proposed in
Chang (2011), Railean, Lenca, Moga, and Borda (2013) and Luo,
Yuan, and Luo (2013). Last, although out of scope of this work
we would like to point out that approximate regularities and peri-
odicities has been considered by Amphawan, Surarerks, and Lenca
(2010), Amir and Levy (2012) and Kiran and Kitsuregawa (2013).

By considering top-k closed patterns with minimal length con-
straint, we here propose to cope with all the issues mentioned
above. In addition, a key point when taking into account temporal
behavior is to maintain the occurrence data related to the items.
For that purpose, we also propose an new compact representation
of the data which allows to apply a pruning property to discover
the regular patterns.

3. Preliminaries and problem definition

We here first present the basic concepts and notations used to
discover top-k frequent-regular patterns. For the sake of consis-
tency, we use similar definitions and notations as in Amphawan
et al. (2012b). Last, we introduce the problem of top-k
frequent-regular closed patterns with minimal length.

3.1. Frequent and regular patterns

Let I ¼ fi1; i2; . . . ; ing be a set of n items. A set X#I, is called
a pattern (an itemset) or a l-pattern if X contains l items. A trans-
actional database TDB ¼ ft1; t2; . . . ; tmg is a set of m transactions.
Each transaction is a 2-tuple (j;Y) where j is a unique transaction
identifier (tid for short), and Y#I is an itemset.

The pattern X is said to occur in the transaction tj ¼ ðj; YÞ ,
and is denoted tX

j
, if X#Y. Obviously, it is equivalent to say that

the transaction tj contains X. The set TX ¼ ftX
j
; . . . ; tX

k
g;j;k 2

½1;m� and j 6 k, is the ordered set w.r.t. tids of transactions that
contain X.

Definition 1 (Regularity of pattern X). Let tXj and tXk be two
consecutive transactions in TX, i.e. where j < k and there is no
transaction ti;j < i < k, such that ti contains X. Thus, k� j is
the gap of occurrence of X between tXj and tXk (notice that the
number of transactions not containing X between tXj and tXk is
k� j� 1 ). We define the regularity rX of X to be the maximal gap
of occurrence of X between any two consecutive transactions in TX.

There are two special cases to consider: if X does not appears in
the first transaction t1 then its first regularity is initialized with the
tid of the first transaction that contains X; if X does not appears in
the last transaction tm, then its last regularity is defined by m� v
where v is the tid of the last transaction that contains X. So, if
one consider any subset of k transactions in TX, where k P rX, then
the itemset X should appear at least one times.

3.2. Top-k frequent-regular closed patterns with minimum length

In the frequent and regular framework, the interestingness of a
pattern X is evaluated by the support sX ¼ jTXj and the regularity
rX of X (Tanbeer et al., 2009). Thus, the problem of top-k
frequent-regular patterns mining can be defined as below
(Amphawan et al., 2009):

Definition 2 (Top-k frequent-regular patterns (Amphawan et al.,
2009)). Let’s regard the list of patterns sorted by descending
support values. Let sk be the support of the kth pattern in the
sorted list. The top-k frequent-regular patterns mining problem is
then to discover the set of first k patterns having a support greater
or equal to sk, a regularity no greater than a user-given maximum
regularity threshold rr, where k is the number of user desired
patterns.

However, without the closed property of patterns, the top-k
frequent-regular patterns mining approach may generate redun-
dant and/or uninteresting patterns. There may also be a large por-
tion of short patterns included in the results in which users cannot
well extract interesting relationship among items. To cope with
these issues, we here propose to consider the closed property on
frequent-regular patterns and to constrain the minimum number
of items in each pattern as proposed by Han et al. (2002) for
top-k frequent closed patterns.

Definition 3 (Closed property on a pattern X (Pasquier, Bastide,
Taouil, & Lakhal, 1999)). A pattern X is closed if there is no proper
superset with the same support.
Definition 4 (Top-k frequent-regular closed patterns of minimal
length). The top-k frequent-regular closed patterns of minimal
length mining problem is to discover the set of k closed patterns
having highest support, a regularity no greater than a user-given
maximum regularity threshold rr and length no smaller than a
user-given minimum length threshold minl, where k is the num-
ber of user desired patterns.
4. PDBV: Partitioned Dynamic Bit-Vector

We here introduce the Partitioned Dynamic Bit-Vector, a new
bit-vector representation which allows to reduce memory con-
sumption and fast tids intersection, support and regularity com-
putations to generate and evaluate candidate patterns (see the
TFRC-Mine algorithm described 5).

4.1. Towards Partitioned and Dynamic Bit-Vector

Bit-vector is commonly applied to mine frequent and/or closed
patterns for vertical representation of the database ( Burdick,
Calimlim, & Gehrke, 2001; Shenoy et al., 2000). A bit-vector is a vec-
tor of m bits (m being the number of transactions) and there is one
bit-vector for each considered pattern. The ith bit is 1 (respectively
0), if the transaction of tid i contains the corresponding pattern
(respectively does not contain). This representation allows to scan
the database once and also to reduce memory consumption.
Several efficient algorithms have been proposed and results are
significant (e.g. Dong & Han, 2007; Song, Yang, & Xu, 2008).
However, bit-vector always have a fixed size equal to m. In addition,
many bit-vectors may contain many consecutive 0 bits. This can be
particularly the case with sparse databases that are frequently con-
sidered. So, there is a room for improvement of bit-vector
representation.

Vo, Hong, and Le (2012) thus proposed a concise bit-vector
namely Dynamic Bit-Vector (DBV). The main idea of DBV is based
on the use of a positive integer to recognize the number of consec-
utive 0 from the head of the vector and then applies normal
bit-vector to store all of information after the first appearance of
the considered pattern. A similar compression is done after the last
occurrence of the pattern.

For example, let’s consider the pattern a occurring in the set
of transactions Ta ¼ fta

40
; ta

54
; ta

55
; ta

102
; ta

103
; ta

104
; ta

109
; ta

191
;

ta
192
; ta

198
; ta

200
; ta

215
g, where TDB contains 240 transactions

(m ¼ 240). Let us suppose that a bit-vector is represented by bytes
of 8 bits. So, one needs here 30 bytes. Fig. 1 shows the bit-vector
of pattern a in decimal notation. The first four bytes are 0



Fig. 1. Example of bit-vector, DBV, and PDBV for an item ‘a’ (expressed in Bytes).
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(corresponding to the 32 first transactions) and the fifth one is 1
(i.e. 00000001) corresponding to transactions t33 to t39, where a

does not occur, and to t40 which contains a. The last three bytes
are also equal to 0 because a does not appear in transactions
t217 to t240, meanwhile the absence on t216 is contained in the last
non-zero byte of DBV. DBV will then compress the bit-vector
(7 bytes can be removed, and 1 byte is used to store this
information).

DBV applies only at the head and at the tail of the vectors. In
many situations, a large part of the patterns may appear in the very
first transactions and also in the last ones. For these cases, the DBV
approach will not be efficient. In addition, compression can be
done in a similar way between the head and the tail of the vectors.
We thus propose a Partitioned Dynamic Bit-Vector (PDBV) represen-
tation to tackle these issues.

4.2. Structure of Partitioned Dynamic Bit-Vector

Remember that a pattern is regular, if it occurs at least once in
every rr consecutive transactions. So, if the database is split into
p ¼ dm=rr e consecutive partitions, a regular pattern should appear
at least once in each partition. This remark is the main idea behind
the definition of the Partitioned Dynamic Bit-Vector (PDBV). A PDBV

is simply a set of DBVs of equal size fDBV1; DBV2; . . . ; DBVpg
where each DBVi is build (following the traditional approach) on
partition i.

Let’s consider the example depicted in Fig. 1 where a bit-vector
of 30 bytes represents the occurrences of item a. If we split the
database into three partition (p ¼ 3), then each partition contains
10 bytes. The corresponding PDBV removes 21 bytes of 0 and add
for that 3 bytes. PDBV needs less memory than DBV (12 against
24 bytes).

Based on DBV, PDBV will have similar performance in worst
case. However in many cases it will need less memory, especially
on sparse databases.

Lemma 1. For any pattern X, the number of bytes contained in

PDBV X is less or equal than DBV (and obviously than bit-vector).
Proof. PDBV ¼ fDBV1; DBV2; . . . ; DBVpg compresses the vector at
any head if there at least two bytes of 0 and at the tail if there at
least one byte of 0 for each DBVi corresponding to the ith parti-
tion. DBV compresses the vector only at the head (i.e. correspond-
ing to DBV1) and at the tail of the non partitioned vector (i.e.
corresponding to DBVp). So, PDBV is equal to DBV when a pattern
occurs in the first and in the last transactions of each partition.
In all other cases, PDBV has a higher compression rate. h
4.3. An efficient method for fast computing support and regularity
from a PDBV

Computing the support and the regularity of each –candidate–
pattern are costly. Vo et al. (2012) proposed to use a look-up table,
an additional-static table (completely independent from the con-
tents of database) which contains the support of all possible values
of each byte, to efficiently count the number of bits 1 of a bit-vector
(i.e. its support). We here also use a similar look-up table where we
add three information to compute the regularity values from each
byte of PDBV:

� pf: the position of first appearance of bit 1 (if there are only bits
0;pf ¼ 8).
� nl: the number of bits 0 after the last occurrence of a bit 1 to

the end of the byte (if there are only bits 0;nl ¼ 8).
� mg: the maximum position gap between two bits 1 (if there is

only one or zero bit 1;mg ¼ 0).

With a look-up table, the time complexity for computing sup-
port and regularity values of any pattern is then OðbÞ, where b is
the maximal number of bytes contained in PDBV. The worst case
is when no compression can be done i.e. as for DBV and bit-vector.

As an example, let’s consider the look-up table of Fig. 2 where
each byte is a sequence of 8 bits. This table has thus 28 ¼ 256
entries. The third entry corresponds to the sequence 00000010
(which values 2) where there is only one bit 1 (at the 7th position):
pf ¼ 7;nl ¼ 1;mg ¼ 0. The support of this byte is 1.



Fig. 2. Example of regularity calculation.
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The regularity of each pattern X can then be computed by
sequentially considering each DBVi of the corresponding PDBV.
Let h0i (respectively t0i) be the number of consecutive bytes
whose value 0 from the head (respectively to the tail) of each
DBVi. Indeed, one have to take into account only 3 situations:

1. the first appearance of X in the current partition: this is deter-
mined by the gap of appearance between the last non-zero byte
of DBVi�1 and the first non-zero byte of DBVi,

2. the appearance of X between two bytes: this is determined by
the gap of disappearance between any two consecutive
non-zero bytes, and

3. the last appearance of X in the database: this is determined by
the gap between the last bit ‘1’ of the last non-zero byte in DBVp

and the end of database.

Let’s analyze the calculation of regularities in
DBV3 ¼ f3; f3; 5; 0; 2gg (Fig. 1). It has three non-zero bytes.
Four local regularities need to be computed: one for the first
non-zero byte value 3, one for the gap between the first and the
second non-zero bytes values 3 and 5, one for the gap between
the second and the third non-zero bytes values 5 and 2, and one
for the gap between the last non-zero byte value 2 and the end
of the partition. These four situations correspond respectively to
case 1, case 2, case 2 and case 3 of Lemma 3. Each calculation is
illustrated in Fig. 2.

Lemma 2. The look up table and PDBV X provide an efficient way of
computing the support of a pattern X.
Proof. Following the definition provided in Vo et al. (2012), the
jth element of the lookup table contains the number of bits 1 of
the byte value j. Computation of the support of X with PDBVX is
done by summation of the support of the jth element of the
lookup table for the non-zero bytes value j in each DBVX

i
. These

operations on bytes are in Oðdm=bytesizeeÞ. The computation of
the support with the PDBVX representation is thus correct and effi-
cient. h
Lemma 3. The look up table and PDBV X provide an efficient way of
computing the regularity of a pattern X.
Proof. Based on the three cases mentioned above the regularity of
a pattern is:

max

maxðnlloi�1 þðt0i�1�8Þþðh0i �8Þþpffoi ; mgfoi Þ case:1

maxðnlloi þðnz�8Þþpfci ; mgci Þ case:2

nllop þðt0p �8Þ case:3

8>>>><
>>>>:

where: nlloi is the number of bits 0 after the last bit 1 of the last
non-zero byte of DBVi;t0i�1 is the number of byte 0 at the tail of
previous DBVi�1;h0i is the number of bytes 0 at the head of the cur-
rent DBVi;pffoi is the position of first bit 1 in the first non-zero byte
of DBVi;mgfoi is the maximum position gap between two bits 1 in
the first non-zero byte of DBVi;nz is the number of bytes 0 between
two non-zero bytes; pfci is the position of first bit 1 in considered
non-zero byte of DBVi;mgci is the maximum position gap between
two bits 1 in considered non-zero byte of DBVi;nllop is the number
of bits 0 after the last bit 1 of the last non-zero byte of DBVp;t0p is
the number of bytes 0 at the tail of DBVp.

The values nlloi ;pffoi ;mgfoi ;pfci ;mgci and nllop are easily
extracted from the look-up table. The value t0i�1;h0i;nz, and t0p

are also easily retrieved by reading the bytes of DBVi�1 and DBVi.
The operations on bytes are in Oðdm=bytesizeeÞ. The computation
of the regularity with the PDBVX representation is thus
efficient. h
4.4. Method for PDBVs intersection

The classical intersection operations on PDBVs are done to gen-
erate new candidate patterns in the same manner as for DBVs (Vo
et al., 2012). The main difference is here that we can consider to
sequentially intersect each DBVi contained in the set of considered
PDBVs (as shown in Algorithm 1).



Algorithm 1. PDBVs’ intersection

Input: set of n PDBVs: fPDBV1; PDBV2; . . . ; PDBVng
Output: a new PDBV ¼ fDBV1; DBV2; . . . ; DBVng, its

support s, its regularity r

for each jth partition from all p partitions do
� h0PDBV

j
¼ maxðh0PDBV1j ; h0PDBV2j ; . . . ; h0PDBVnj Þ

//find the maximum position
for each i ¼ 1 to n do
� posi ¼ h0PDBV

j
� h0

PDBVi
j //find the first byte

of DBVPDBVij to intersect

� count ¼ maxðjDBVPDBV1j j � pos1; jDBVPDBV2j j � pos2; . . . ;

jDBVPDBVnj j � posnÞ //compute number of bytes to intersect

while count > 0 and ðb ¼ b
DBV

PDBV1
j

pos1 \ bDBV
PDBV2
j

pos2 \hskip
0.35em

\ . . . \ bDBV
PDBVn
j

posn Þ ¼ 0 do
� decrease count by 1 and increase pos1;

pos2; . . . ; posn by 1
� increase h0PDBVj by 1
� calculate s and r from b (case: 1 of Lemma 3)
� collect b as a member of DBVj of PDBV
while count > 0

� b ¼ b
DBV

PDBV1
j

pos1 \ bDBV
PDBV2
j

pos2 \ . . . \ bDBV
PDBVn
j

posn

� decrease count by 1 and increase pos1;

pos2; . . . ; posn by 1
� collect b as a member of DBVj of PDBV
if b > 0 then
� calculate s and r from b (case: 2 of Lemma 3)

� delete sequence of bytes 0 at the end of DBVj of PDBV
� calculate regularity r from the last occurrence of the
last partition and the end of database (case: 3 of Lemma 3)
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5. TFRC-Mine: top-k frequent-regular closed patterns mining
based on minimum length

The TFRC-Mine algorithm mines top-k frequent-regular closed
patterns with length no less than minl as described in Definition 4.
It uses two lists, one for frequent and regular items and one top-k
list for the output patterns. The proposed PDBV representation is
used to collect the information of patterns. TFRC-Mine has two
main steps. First, it scan once the database to initialize the first list.
Second, frequent and regular items (i.e. member of the first list) are
merged to generate patterns of minimal length.

5.1. List of frequent and regular items

The initialization of the frequent and regular items list
FRI-list is done with one database scan. Each entry of
FRI-list contains 5 information: an item i, its support si, its
regularity ri, its last known occurrence tid loi and its
Partitioned Dynamic Bit Vector PDBVi.

The database is then sequentially scanned by group of rr con-
secutive transactions in order to build the p DVBs of PDBV of all
items. The first rr transactions will help to initialize the
FRI-list: a new entry is created for any item i that firstly occurs
(si ¼ 1 ;loi ¼ tid of the transaction, and the other informations
are initialized as described in Section 4); otherwise, the entry for
item i is updated (si is increased by 1;loi is set to the new tid,
etc.). The following groups of rr transactions are then scanned
and used to only update the entries of items already occurring in
the first group of transactions. Indeed, if an item does not appear
in the rr first transactions, then this item will not be regular (see
the more general regularity property described in Lemma 4).
Finally, items with regularity greater than rr are deleted from the
FRI-list and the list is sorted in support descending order.
Details of FRI-list initialization are shown in Algorithm 2.

Lemma 4. A pattern X is not a regular pattern if there is one DBV X
i ,

except the last DBV X
p , in PDBV X where each byte is 0.
Proof. Each DBVX
i

in PDBVX represents a set of X’s occurrence infor-
mation in rr consecutive transactions. So, if each byte of any DBVX

i
,

except the last one (DBVX
p
), is 0 then X does not occur for rr consec-

utive transactions and thus can not be regular. If each byte of DBVX
p

is 0, then X is not regular if and only if X does not occur in the last
transaction of the previous DBVX. Notice that if m� rr is not an
integer, DBVX

p
only contains occurrence information of X for the last

m% rr transactions. For this case, it cannot guarantee, whether X is
regular or non-regular, because X can be regular even if DBVX

p
con-

tains only byte 0. However, the last regularity of X can be calcu-
lated by case 3 of Lemma 3. When a pattern X is detected as
non-regular, then it can be definitively pruned. h

Algorithm 2. Scanning of database

Input: k;rr;TDB

Output FRI-list
� split TDB into small partitions and initialize FRI-list

for each transaction tj in the first partition do
for each item i in transaction tj do

if item i does not have an entry in the FRI-list then
� create a new entry for item i with

si ¼ 1 ;ri ¼ j;loi ¼ j

� create and update DBVi1 with j

else
� add the support si by 1
� calculate regularity ri by j (ri ¼ j� loi if

ðj� loiÞ > ri)
� update loi and DBVi1 with j

for each partition m ¼ 2 to the last partition do
for each transaction tj in mth partition do

for each item i in transaction tj do
if item i has an entry in the FRI-list then

if tj is the first occurrence of i in mth partition
then

� add the support si by 1
� calculate regularity ri by j (ri ¼ j� loi if

ðj� loiÞ > ri)
� create DBVim and update loi and DBVim with j

else
� add the support si by 1
� calculate regularity ri by j (ri ¼ j� loi if

ðj� loiÞ > ri)
� update loi and DBVim with j

for each item i in the top-k list do
� calculate regularity ri by jTDBj � loi
if ri > rr then
� remove entry of i out of the FRI-list

� sort FRI-list by support descending order
5.2. Mining a complete set of results

The mining process of the top-k frequent-regular closed pat-
terns is mainly performed with a top-k list. Each entry of the
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top-k list contains 5 information: a pattern X of minl length at
least, its support sX, its regularity rX, its set atX of items that
always appear with pattern X, and its Partitioned Dynamic Bit
Vector PDBVX.

The algorithm TFRC-Mine then apply a best-first search strat-
egy w.r.t. the support order in the FRI-list and the constraint
on the number of items to generate candidate patterns. Indeed,
items with high support have more chance to frequently and/or
regularly appear together.

As described in Algorithm 3, TFRC-Mine thus consider the first
group of minl items of size 1 and join them. Their PDBVs are inter-
sected in order to compute the support, the regularity and the PDBV
of the candidate pattern. The candidate pattern’s entry is inserted at
the first position of the top-k list, if the regularity is no greater than
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rr. Then, the item at position minl þ 1 is considered to be joined
with previous items using the same constraints (i.e. the pattern is
formed by minl items, it has a regularity no greater than rr, and
it is inserted in the top-k at its right position w.r.t. descending sup-
port order). In case of insertion of a pattern, its neighborhood needs
to be examined (Yan, Han, & Afshar, 2003): if there is no pattern in
its neighborhood with the same prefix and the same support, then
the inserted pattern is closed and the kth entry is deleted; other-
wise, there is a chance that it is not closed, and the top-k list has
to store more than k patterns for a while in order to be sure that
any closed patterns with highest support will not be missed. This
process continue with the remaining items in the FRI-list. At
the end of this process, the top-k list is initialized with at most k
frequent-regular patterns of length minl.
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The initialization of the top-k list is done with a same process.
However, an additional constraint is applied: only couple X and Y

of patterns with the same prefix are considered to generate longer
candidate pattern Z ¼ XY. This constraint reduce the number of
unsuccessful candidate and the number of merging operations to
generate a successful candidate (Yan et al., 2003).

Then, TFRC-Mine has to check whether X and/or Y are closed or
not. One has here to consider three cases:

1. if sZ ¼ sX ¼ sY then X and Y can not be closed; the last item of
pattern Y is added to atX (i.e. the entry of X contains the new
candidate pattern Z ¼ X [ atX), and the entry of Y is deleted
(at this time, the top-k list does not contain patterns X and Y

anymore);
2. if sZ ¼ sX and sZ – sY then X can not be closed; the process is

then similar to case 1 except that the entry of Y is not deleted;
3. if sZ – sX and sZ – sY then X and Y can be closed; the candidate

pattern Z is inserted into the top-k list by taking into account its
neighborhood as described above.

This merging step is repeated to all pairs of patterns in the top-k
list. The process will end, thanks to regularity and prefix con-
straints. Finally, all the patterns after the kth pattern are elimi-
nated from the top-k list, since they cannot be a result.

Algorithm 3. Mining a set of k patterns

Input: FRI-list, rr; k; minl
Output: A set of top-k frequent-regular closed patterns

for a group of minl items (e.g. fi1;i2; . . . ; iminlg) in the
FRI-list

� merge all items in the group to generate pattern Z

� intersect PDBVs: PDBV1 \ PDBV2; . . . ; \PDBVminl to
compute support sZ, regularity rZ and collect PDBVZ (as
described in Section 4.4)

if rZ 6 rr and sZ P skth then
� create an entry for pattern Z with sZ;rZ and PDBVZ and

insert into the top-k list by support descending order
if there is no neighbor of Z with the same prefix items,

support, and regularity then
� remove the entry of the kth entry from the top-k list

for each pattern X in the top-k list do
for each pattern Y in the top-k list ðX – YÞ do

if X and Y have the same prefix then
� merge patterns X and Y to be pattern Z

� intersect PDBVX and PDBVY to compute support of
sZ, regularity rZ, and collect PDBVZ

if rZ 6 rr and sZ P sk then
if sZ ¼ sX ¼ sY then
� add the last item of pattern Y to atX and

remove the entry of Y from the top-k list
else if sZ ¼ sX (sZ – sY) then
� add the last item of Y to atX

else if sZ ¼ sY (sZ – sX) then
� add the last item of X to atY

else
� create an entry for pattern Z with sZ;rZ and
PDBVZ and insert into the top-k list by support
descending order

if there is no neighbor of Z with the same prefix
items, support, and regularity then
� remove the entry of the kth entry from the
top-k list

� remove all the patterns after the kth pattern out of the
top-k list
Lemma 5. TFRC-Mine only produces the top-k frequent-regular
closed patterns of length minl.
Proof. The top-k list is initialized only with patterns of minl items.
Each candidate pattern is build by merging two patterns in the
top-k list, so each final pattern contains at least minl items. The
use of Lemma 4 guarantees that only regular patterns are consid-
ered. Each candidate or new pattern is inserted at its right place
in the top-k list w.r.t. support descending order. So obviously, the
top-k list contains only frequent-regular patterns of length minl.

Let’s now show that the final patterns are closed. For each
candidate pattern X, TFRC-Mine first check whether it is closed. If
there is no pattern with the same prefix as X, then X is closed (since
there is no possibility to generate a superset of X that have the
same support of X). The closed pattern X will then belongs to the
final result if there is no more than k� 1 patterns with greater
support. Otherwise, the pattern X is merged with all the patterns
with same prefix to generate new longer candidate patterns (case
3). If none of these patterns have the same support as X, then X is
now closed. Otherwise, X is non-closed and will be eliminated by
case 1 or case 2. This process is repeated until at most k (it can be
less depending of the regularity values) closed patterns are found.
Each iteration either remove non closed patterns and/or add a
closed pattern. The number of iteration is bounded as k is a finite
number. h
6. Experimental study

This section reports the performance study of TFRC-Mine. To
the best of our knowledge, this is no competitive algorithm which
also aims to avoid redundancy for the task of mining the top-k
frequent-regular patterns. The closest algorithms are MTKPP,
TR-CT, TKRIMPE which aim to mine top-k frequent-regular pat-
terns (Amphawan et al., 2009, 2012a, 2012b). We thus also analyze
TFRC-Mine

⁄ which corresponds to TFRC-Mine with the minimum
length minl of patterns to be mined set to 1 and without closed
property constraint. In that way, TFRC-Mine

⁄ is similar to
MTKPP, TR-CT, and TKRIMPE except that each algorithm has its
own representation to maintain occurrence information.

We also compare the efficiency (runtime and memory usage),
average length of patterns and compactness of results of
TFRC-Mine, TFRC-Mine

⁄, MTKPP, TR-CT, and TKRIMPE,
respectively.

6.1. Datasets and test environment

Comparison has been done with four databases available at
(Goethals & Saki, 2003). PDVB and thus TFRC-Mine are expected
to be efficient when databases are sparse. Dense databases are also
considered to show that TFRC-Mine is still efficient in that case:

� Dense databases: Chess database which consists of 3;196 trans-
actions with an average length of 37 items; Mushroom database
which consists of 8;124 transactions with an average length of
23 items;
� Sparse databases: T10I4D100K which consists of 100;000 trans-

actions with an average length of 10 items; Retail which con-
sists of 88;162 transactions with an average length of 10.3.

All experiment were performed on a Intel� Xeon 2.4 GHz with
8 GB of memory, running Linux system. Both algorithms are imple-
mented in C.

The parameter values are set so that the behavior of the algo-
rithms can be analyzed in several meaningful situations.
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Comparison is done for k ¼ 10;100;1000 and 10000, for several
values of rr between 1% and 16% depending on the density of
the database and several values of minl from 1 to 10 depending
on the average length of transactions and rr.

6.2. Performance on PDBV

The efficiency of PDBV against DBV can be observed in terms of
runtime and memory usage. Fig. 3 shows the runtime of both rep-
resentations for several values of k and minl. It shows that PDBV is
faster for sparse datasets and has similar performance as DBV for
dense datasets. These experimental results are consistent with
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what is expected theoretically: with sparse datasets, there are
many sequences of byte 0 which can be removed by PDBV and thus
runtime for storing and intersection occurrence information pro-
cessing can be reduced (in average PDBV is 10% faster than DBV);
however, with dense datasets, this benefit is reduced and PDBV

tends to have similar runtime than that of DBV.
Fig. 4 shows the memory usage of both representations. The

result is also consistent with what is expected theoretically. The
figure shows that PDBV uses less memory on sparse datasets
(about 8 to 10% less) but uses nearly the same amount of memory
than DBV on dense datasets. The reduction of memory usage made
by PDBV also contributes to decrease the runtime.
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6.3. Computational time

The comparison between TFRC-Mine
⁄, MTKPP, TR-CT and

TKRIMPE aims to illustrate the advantage for runtime and memory
of the new bit vector representation PDBV used to collect tids
(occurrence information). Runtime w.r.t. minimum length of these
algorithms is presented Fig. 5 (where TFRC� Mine1 indicates that
TFRC-Mine is run with minl ¼ l).

For each situations, TFRC-Mine⁄ is faster than MTKPP (as for
TR-CT and TKRIMPE). TFRC-Mine is still faster when
minl ¼ 1 . Obviously, mining larger patterns requires more com-
putations, especially more combinations between candidates and
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more intersections of tids are needed. These operations are
numerous when databases are sparse. Thus, TFRC-Mine is slower
than MTKPP in most cases. However, TFRC-Mine is still very
competitive for larger minl especially when databases are dense.
In addition, it is competitive for large k whatever is the database
type.

The runtime of TFRC-Mine, when minimum length is fixed,
mostly depends on the regularity threshold rr and on the type of
the database (sparse/dense, number of transactions, and number
of items). The higher rr is the larger the set of candidate regular
patterns is. TFRC-Mine thus needs more times. However, it is still
efficient for large rr as shown in Fig. 6, even for the biggest
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database (T10I4D100K) and for the database with a large amount
of items (Retail).
6.4. Memory consumption

Memory usage w.r.t. minimum length is given in Fig. 7.
Memory usage of TFRC-Mine consists of storing the FRI-list

and the top-k list and there is no advantage for sparse databases.
Indeed, with sparse data, there is more chance to have long and
non-closed patterns with low support and thus TFRC-Mine has
to maintain more than k patterns for a while. However, as
expected, TFRC-Mine⁄ is more efficient than MTKPP, TR-CT and
TKRIMPE for every database. In addition, for dense databases
TFRC-Mine is more efficient than other algorithms thanks to
the PDBV representation. Indeed, the support of the kth pattern
in the top-k list has more chance to be high and there is less
patterns with the same support. Thus, there is more chance to
maintain a list as short as possible i.e. with k entries. This is
particularly true for very dense database like the Mushroom
database.

Fig. 8 illustrates that the variation of the regularity threshold
has limited impact on TFRC-Mine memory consumption. As dis-
cussed for runtime (Fig. 6) high regularity may lead to large set
of candidate regular patterns. In particular, more memory is used
to store single items in the FRI-list.
 0

 10

 20

 30

 40

 50

 60

10 100 1000 10000

C
om

pa
ct

ne
ss

 o
f r

es
ul

ts
 (%

)

k

Compactness (minl = 1)

Chess(σr = 1%)
Mushroom (σr = 4%)

Retail(σr = 5%)
T10I4D100K(σr = 5%)

Fig. 10. Compactness of Top-k frequent-regular closed patterns.
6.5. Average length of results

Fig. 9 shows the average length of the discovered patterns. It is
clear that TFRC-Mine⁄ behave like MTKPP. Both algorithms tend to
mine short patterns. Fig. 9 illustrates also the ability of TFRC-Mine
to mine longer patterns. It should be noticed that the average
length of patterns is relatively stable when minl is high (whatever
the regularity threshold). Indeed, patterns with more than minl

items tend to be less and less frequent and thus can not be a result
thanks to the support constraint.

6.6. Compactness of top-k frequent-regular closed patterns

Fig. 10 shows the compactness factor of the closed-based
approach. Thus, comparison is done between MTKPP and
TFRC� Mine1. Compactness corresponds to the percentage of
top-k frequent-regular patterns that are covered by the top-k
frequent-regular closed patterns (the higher the better).

In most cases, compactness is high. The closed-based approach
can significantly reduce redundancy in the set of top-k patterns.
Compactness decreases when k increases. Indeed, when k

increases, there is more chance to mine non-redundant patterns.
When compactness is very low it means that there is very few
closed patterns in the top-k frequent-regular patterns (e.g. for the
T10I4D100K database with k 6 100).
7. Conclusion

Frequent and regular or periodic pattern mining is an important
task in many applications. We here considered frequent and regu-
lar patterns where a pattern is said to be regular, given a
user-given regularity threshold rr , if it appears at least once every
rr transactions. Most of the similar approaches require to set a
minimum support threshold which is known to be difficult, few
of them consider the redundancy issue and/or the relationship
between items of a pattern. None of them consider at the same
time all these aspects.

We have proposed TFRC-Mine, a new algorithm to mine the
top-k frequent-regular closed patterns of minimal length. It has
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several advantages and practical implications. The user has to set
the values of meaningful parameters only (k, the regularity thresh-
old and the minimum length). The top-k approach avoids to gener-
ate a large amount of patterns. The closed property aims to remove
redundant patterns and also allows to recover interesting patterns,
those that could have been removed because of redundant ones.
Last, the constraint on the pattern’s length aims to enhance the
interestingness of the discovered patterns. As a whole, our pro-
posal reduce the number of patterns and enhance the quality of
each pattern.

TFRC-Mine uses a new compressed bit-vector which allows to
prune candidates which can not be regular, and fast computation
of the support and the regularity values. In addition, the algorithm
scan the database only once. Its efficiency, for both running time
and memory consumption, is formally demonstrated and is veri-
fied through several experiments. Clearly, TFRC-Mine is very effi-
cient for sparse databases.

However, as formally discussed (and illustrated by the experi-
ments) a first limitation of TFRC-Mine is that there is very few
gain for dense databases. In addition, the top-k list is in memory
until the end of the process (that is also why the database is
scanned only once) and thus TFRC-Mine can manage only data-
bases such that their compressed bit-vector representation hold
in memory.

Perspectives of this work are of three kinds. The first one is
qualitative. It includes establishing connection between regularity
and periodicity. The later may force stronger constraints on when a
pattern should appear. At the opposite, depending of the applica-
tion domain, one can be interested in additional interestingness
measures allowing some soft temporal constraints. Items’ utility
is obviously to be considered, especially with monotone con-
straints. The second perspective is to extend the algorithm for
incremental databases and data streams. Last because each parti-
tion can be managed locally a third perspective is to develop a par-
allel and distributed version of TFRC-Mine.
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