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Abstract

Zacharias [ ‘Proof of a conjecture of Merca on an average of square roots’, College Math. J. 49 (2018),
342-345] proved Merca’s conjecture that the arithmetic means (1/n) Y7_, Vk of the square roots of the
first n integers have the same floor values as a simple approximating sequence. We prove a similar result
for the arithmetic means (1/n) X;_, vk of the cube roots of the first n integers.
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1. Introduction

Sums of powers of positive integers have fascinated mathematicians for a long time.
In 1631, Faulhaber gave the formula

n

1 < (p+1 »
=y e
Jj=0

k=1

for any positive integer p, where the B; are Bernoulli numbers with B; = —5. Gould

[1] and Merca [2] formulated this sum in term of Stirling numbers,

n P .
kP = (—1)f1j{”+p_1}

Ramanujan [3] gave a formula for the sum of square roots of the first n integers,
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Shekatkar [4] extended this result to rth roots,
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where ¢,(r) depends on the parameters n and r and satisfies 0 < ¢, (r) < % Recently,
Wihler [5] gave another expression for this sum,

Z”:\,/-:r m(ml—l/r)_ r W(v_1+1/r)_5v,,,,, (L)
k=v

2 r+1 2 12r
with 6, ,1 =0and o,(v + 2,n + 2) < 6,5, < 0(v,n) for r > 1, where

1
p—— ifv=1,
(v— 1) e ey >0,

In [2], Merca established another approximation for the arithmetic mean of the
square roots of the first n integers and conjectured that the floor values of the average
and the approximation are the same, that is,

22 =[G+ 5]

Zacharias [6] proved this conjecture by constructing a step function which has steps
at two types of abscissas depending on numbers modulo 2. In this paper, we present a
similar theorem for cube roots.

Tueorewm 1.1. For any positive integer n,

{Z\/—J {(4 4n)\/’T_41_nJ' (12

The idea of our proof is to divide » into nine cases based on numbers modulo 9 and
to prove that, in each case, the values on the left- and right-hand sides of Equation (1.2)
have the same floor.

2. Proof of Theorem 1.1
For x > 1, define

31, 1 31, 1
A(x)—(z+4—x)\/x+1—ﬁ and L(x)_(Z 4)\/x+1—E

From their derivatives, A(x) and L(x) are increasing functions for x > 1.
From (1.1),

1 - 3 3 11\ 1 51n3
- \/%z(—+—)\/n+ -— =
n; 4  4n dn  36mn

5

23 B <5< 3- n~?3 and 0 < §;,3 < 2 for n > 2. Consequently,

where 2~
] n
A(n) > —Z Vk> Ln) forn>2.
n
k=1

In order to prove the main theorem, we need the following lemmas.
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Lemma 2.1. S, = (1/n) Yi_, Vk is an increasing sequence.

Proor. The inequality S, < S, is equivalent to };_, Vk<nVn+1. We prove the
latter assertion using mathematical induction. The assertion is clear for n = 1. To show
the inductive step, assume that 3)7_, Vk < nVn + 1. Then

n+1 n
Zﬁzz Vi+ Vit l<m+DVn+l<@m+D)Vn+2.
k=1 k=1
It follows by induction that {S ,} is an increasing sequence. O

For k e NU {0} and j = 1,2, we define the sets B as follows:

) 3_ 3537
64(% + 1) 37’64(9k+2) 3] AN ifk=0,1,2,
. 27 27 ]
, i 3_ 7 -80]
64(% + 1) 37’64(9k+2) 801 A itk >3,
_ 27 27 :
] 3_ 3547
64(9% +2) 26’64(9k+3) 4 AN ifk=0,1,2,
B =l 273 273 ]
G40k +2)° =53 64Ok +3) ~54) 0 er s
27 27 ]

and, for j = 3,4,...,9, we define the sets B, by

B [64(9k+j)3 —b; 6409+ j+ 1) —bjy —27
ik =

27 ’ 27 ’
where
27 if j =0 (mod 3),
bj=132(125-1) if j %0 (mod 3) and j = 2/,
j(5+ (=1)'i) if jis prime and j=i(mod3),0<i<3
and b]o = 37.

The following lemma shows that the classes Bj; partition N. This will allow us to
divide the proof of Theorem 1.1 into nine cases.

Lemma 2.2. The set {Bjx |1 < j <9,k > 0} forms a partition of N, that is,

o 9
N = U U Bj,k’ where Bj,k N Bj+1,k =0, Byy N Bygs1 = 0.
k=0 j=1
Proor. Notice that
) 64(9(0) + 1)3 — 37
min By = =1

27
and it is easy to check that all the boundary points of the Bj; are integers. It is
obvious from the definition of B, that max Bj; + 1 = min B, for 1 < j <8 and
max By + 1 = min By 4. Hence, {B;;} partitions N. O
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For any n € Bjy, to prove that S, and A(n) are in the same interval [9k + j, 9k + j + 1),
we use the facts that L(n) < S, < A(n) and that both L(n) and A(n) are increasing
sequences. Consequently, for n; = min B, and n, = max Bjy, it is sufficient to show
that L(n;) > 9k + j and A(n;) < 9k + j + 1 by considering the sign of the coefficients
of certain Taylor expansions. In the case of n € By, however, this technique is not
applicable for some numbers k. For these basic numbers k, we use a simple direct
calculation instead.

Proor oF THEOREM 1.1. Letn € N,

Case 1. n € Byy.

Case 1.1. k= 0. Observe that

_ 641 -3 64(2)° - 53

<n< ———  =17.
7 ST g 7

Since S, and A(n) are increasing sequences,

1=51<85,<8517219880 and 1.0099 = A(1) <Am) <A(7)~1.98%4.
Hence, |S,] =|A(n)|=1for1 <n < 17.
Case 1.2. k>1.Let

1

64(9% + 1)° — 37
D T E—
We will show that L(n;) > 9k + 1. Substitute n; into the following expression and
expand it as a Taylor series about 1:
(36n;(9 + 1) + 11)* = (ny + DQ27n; +9)°
= —140912433282709 — 1163293726126932(k — 1) — 4266503508623472(k — 1)
—9124406608540608(k — 1)* — 12539857656248064(k — 1)*
— 11485195678476288(k — 1)° — 7010519795527680(k — 1)°
—2750059732008960(k — 1) — 629107509362688(k — 1)
—63945157902336(k — 1)° < 0.

This gives 36n;(9k + 1) + 11 < v/n; + 1(27n; + 9) and, by a simple calculation,

9k+1<$/n1+1(§ 1) o,

ni

4" an,)” 36m,
Let s
64(9% +2)° — 53 k=12,
1y = 273
M ifk > 3.
27

We will prove that A(ny) < 9k + 2. Fork=1,2,

26036934837 ifk=1,

3 3_
(na Ok +2) + 1) = (2 + DG + 1) {72986823793 itk =2.
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Hence, (4n:(9% +2) + 1)> = (mo + DBno + 1)3 > 0. Fork=3,4,5, ...,

(4ny(Ok +2) + 1) = (ma + DGBna + 1)°
= 134154289152k° + 279918084096k + 259135635456k + 138919919616k°
+47252865024k° + 10507311360k* + 1516397696k>
+ 135961344k> + 6837440k + 146656 > 0.

This implies that

Ok +2 > /ny + 1(§ + L) L = A(m).
4 4112

41’!2

Since A(n) and L(n) are increasing, for n; < n < no,

9% +1<Ln)<S, <Am) <% +2.
Hence, |S,| = |A(n)] =9% + 1 fork > 1.
Case 2. n € Byy. Let

64(9% +2)° - 26

fork=0,1,2,
ny = 273
GOy

Fork=0,1,2,

(36n1(9% +2) + 11)* — (n; + (27n; +9)°
= —105321436545024k° — 200298803429376k% — 168848652238848k’
— 82685802627072kS — 25886537404416k> — 5366022080256k
— 735591839616k — 64231766208k> — 3238636392k
—-71778682 < 0.

For k > 3, using the Taylor series expansion about 3,

(36n1(9% +2) + 11)* — (n1 + DQ27n, +9)°
= —20723370376131937 — 95110224549962868(k — 3)
— 164307456860697648(k — 3)> — 152480690365127616(k — 3)°
— 86582810797661952(k — 3)* — 31713445228234752(k — 3)°
—7563596651458560(k — 3)° — 1139310460403712(k — 3)’
—98738846760960(k — 3)® — 3761479876608(k — 3)° < 0.

As in Case 1, this gives 9k + 2 < L(n;). Let

_ 6409 + 373 - 54

2 27
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We claim that A(ny) < 9k + 3. Substituting 7, into the following expression:

9%k +3)+ 1)* = (ma + DBy + 1)
= —80244904034304k"" — 285315214344192k'" — 460995415769088k’
— 446505462595584k% — 287877045288960k” — 129650051727360k°
—41596420313088k° — 9502311626496k* — 1513938218112k
—160144814016k> — 10118551896k — 289206316 < 0

as before, this gives A(ny) < 9k + 3. Thus, for n; < n < ny,
9% +2<L(n)<S,<An) <9% + 3.
Hence, |S,.] = [A(n)] = 9% + 2.

Case 3. n € Bsy. Let
649 +3) - 27
ny = T
By direct calculation,

(3611 (% + 3) + 11)° — (n; + DQ27ny +9)°
= —-101559956668416k° — 294335800344576k® — 378655640911872k’
—283684804374528k° — 136343850006528k> — 43577890742016k*
—9259059419712k% — 1260645061680k> — 99771741900k
— 3496110625 < 0.

Consequently, 9k + 3 < L(n). Let

_ 649 + 43 -173
a 27 ’
As before, we obtain A(n,) < 9k + 4 and conclude that | S, | = |A(n)] = 9% + 3.

np

For the remaining cases, we use arguments similar to those in Case 3 to show that

1S,) = [A(n)] =%+ j forj=4,...,9. O
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