ORIGINAL RESEARCH

Synthesis and cytotoxic activity of 14-deoxy-12hydroxyandrographolide analogs

Uthaiwan Sirion¹ · Teerapich Kasemsuk¹ · Pawinee Piyachaturawat² · Kanoknetr Suksen² · Apichart Suksamrarn³ · Rungnapha Saeeng¹

Received: 9 April 2015 / Accepted: 21 March 2017 / Published online: 1 April 2017 © Springer Science+Business Media New York 2017

Abstract Important anticancer cytotoxicological properties are reported from synthetic analogs of 14-deoxy-12hydroxy-andrographolide, a compound that occurs in *Andrographis paniculata*, an indigenous Southeast Asia plant. Cytotoxicities of 15 synthesized 14-deoxy-12hydroxy-andrographolide analogs were evaluated against a panel of cancer cell lines with some exhibiting much greater than the parent compound. For example analog **2j** was 6–35 times more potent than the parent compound and the anticancer agent, ellipticin, on all cell lines except LU-1 cancer cells. With promising cytotoxicities and simple preparation, this compound has significant potential in the treatment of cancer.

 Cytotoxicity against several cell lines, more active than ellipticine

Keywords 14-deoxy-12-hydroxyandrographolide · Cytotoxic activity · *Andrographis paniculata*

Electronic supplementary material The online version of this article (doi:10.1007/s00044-017-1881-2) contains supplementary material, which is available to authorized users.

- ¹ Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
- ² Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- ³ Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand

Introduction

Andrographis paniculata (Brum. f.) Nees, is a herbaceous plant used widely in traditional medicine in Southeast Asia for treatment of dyspepsia, dysentry, malaria, respiratory infections, and as an antidote for snakebites (Misra et al. 1992). Many ent-labdane diterpenoids have been isolated from *A. paniculata* (Balmain and Connolly 1973; Chen et al. 2008; Kleipool 1952; Shen et al. 2006) but the major constituent, andrographolide **1**, is known for its diverse biological activities including its antihepatoxic potential in the treatment of liver damage (Handa and Sharma 1990), HIV (Calabrese et al. 2000; Reddy et al. 2005), cancer (Kumar et al. 2004; Siripong et al. 1992) and as a bactericide (Singha et al. 2003). Structure-related diterpenoids,

Rungnapha Saeeng rungnaph@buu.ac.th

Fig. 1 Structures of andrographolide 1 and 14-deoxy-12-hydroxyandrographolide 2a

14-deoxy-12-hydroxyandrographolide 2a and andrographolide 1, (Fig. 1), show similar inducibility and cytostatic activities (Matsuda et al. 1994), and serve as precursors for structural modification generating new and interesting compounds. A large number of andrographolide derivatives now have been synthesized from A. paniculata and screened for their bioactivity (Chen et al. 2013; Dai et al. 2006; Das et al. 2010; Fan et al. 2010; Jada et al. 2006, 2007; and others). However, the development of therapeutic derivatives from the uniquely structured 14-deoxy-12hydroxy andrographolide is numerically limited. This substance with its ent-labdane skeleton was first isolated in 0.0004% yields from the aerial portions of A. paniculata as a new diterpenoid therapeutic agent (Matsuda et al. 1994).

Compound **2a** can be prepared from andrographolide **1** via the rearrangement of allylic hydroxyl at C-14 using pyridinium dichromate (Thunguntla et al. 2004). Synthesis of these diterpenoid derivatives is attractive because of their potential bioactivities such as α -glucosidase inhibition (Xu et al. 2007), LPS-induced inflammatory cytokines TNF- α , interleukin-6 (Li et al. 2007), anti-HIV (Wang et al. 2011) and anticancer properties (Nateewattana et al. 2013).

Recently, we reported enhanced cytotoxic activity on P-388 and LU-1 cancer cells by C-19 modified andrographolide analogs (Sirion et al. 2012; Kasemsook et al. 2013). In the present study we report more extensive cytotoxicity studies on new analogs of the 14-deoxy-12hydroxyandrographolide-scaffold (**2a**; Fig. 1). These new analogs are obtained through chemical modification of 14deoxy-12-hydroxyandrographolide **2a** using cheap reagents, convenient procedures and are attractive for process scale synthesis.

Materials and methods

General

All chemical reagents were obtained from chemical companies and used without further purification. Proton NMR spectra were recorded on a Bruker Avance (400 MHz). All spectra were measured in CDCl₃ solvent and chemical shifts are reported as δ values in parts per million (ppm) relative to tetramethylsilane (δ 0.00) or CDCl₃ (δ 7.26) as internal standard. Data reported were chemical shift (multiplicity, integrated intensity or assignment, coupling constant in Hz, assignment). Carbon NMR spectra were recorded on a Bruker AVANC (100 MHz). All spectra were measured in CDCl₃ solvent and chemical shifts are reported as δ values in ppm relative to $CDCl_3$ (δ 77.0) as internal standard. High-resolution mass spectra (HRMS) data were obtained with a Finnigan MAT 95. Infrared spectra were determined on a Perkin Elmer FT/IR-2000S spectrophotometer and are reported in wave number (cm⁻¹). Analytical thin-layer chromatography (TLC) was conducted on precoated TLC plates; silica gel 60F-254 (E. Merck, Darmstadt, Germany). Silica gel columns for open-column chromatrography utilized silica gel 60 (0.040-0.063 mm) (E. Merck, Darmstadt, Germany). Melting points were measured using a melting point apparatus (Griffin) and are uncorrected.

Synthesis of 14-deoxy-12-hydroxyandrographolide analogs

Synthesis of 19-Tr-14-deoxy-12-hydroxyandrographolide (2b) To solution a stirred of 14-deoxy-12hydroxyandrographolide (2a) (41.9 mg, 0.119 mmol) in pyridine (500 µL) was added triphenylmethyl chloride (TrCl) (164 mg, 0.59 mmol), then the reaction mixture was heated at 80 °C for 6 h. The reaction mixture was quenched with NH₄Cl and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (10 mL), dried over sodium sulfate anhydrous, and then the solution was concentrated under reduced pressure. The residue was purified by column chromatography (40% EtOAc/n-hexane) to give 19-Tr-14-deoxy-12-hydroxyandrographolide (2b) in 72% yield (50.9 mg) as a white solid, $R_{\rm f}$ 0.45 (60% EtOAc/ *n*-hexane).

19-Tr-14-deoxy-12-hydroxyandrographolide (2b): Mp 111-112 °C; IR (Neat): 3218, 2933, 1751, 1446, 1046, 749, 704 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.44–7.40 (6 H, m, PhH), 7.33-7.28 (6H, m, PhH), 7.27-7.21 (3H, m, PhH), 7.22 (1H, brs, H-14), 4.82-4.79 (3H, m, H-15, H-17b), 4.63 (1H, brs, H-17a), 4.42-4.49 (1H, m, H-12), 4.09 (1H, d, J = 8.5 Hz, OH), 3.23 (1H, d, J = 9.5 Hz, H-19b),3.16-3.23 (1H, m, H-3), 3.10 (1H, d, J = 9.5 Hz, H-19a), 2.50–2.57 (1H, m, OH), 2.32 (1H, dm, J = 13.0 Hz, H-7b), 1.95-1.81 (2H, m), 1.80-1.70 (2H, m), 1.65-0.86 (7H, m), 1.53 (3H, s, H-18), 0.12 (3H, s, H-20); ¹³C NMR (100 MHz, CDCl₃): δ 172.90, 148.08, 145.02, 143.40 (3×C), 136.04, 128.44 (6×C), 128.05 (6×C), 127.24 (3×C), 107.48, 87.60, 80.14, 70.40, 67.35, 64.79, 55.80, 53.23, 42.75, 39.02, 38.08, 36.90, 30.16, 28.11, 24.03, 23.30, 15.03; HRMS (ESI) m/z calcd for $C_{39}H_{44}O_5Na [M+Na]^+$ 615.3087, found 615.3070.

Synthesis of 3,12-Ac-19-Tr-14-deoxyandrographolide (**2c**) The stirred solution of 19-Tr-14-deoxy-12-hydroxyandrographolide (**2b**) (20.6 mg, 0.035 mmol) in acetic anhydride (500 μ L) was refluxed to 145 °C for 3 h. The reaction mixture was diluted with EtOAc (20 mL) and quenched with saturated NaHCO₃. The solution mixture was extracted with EtOAc (3 × 20 mL). The combined organic layer was washed with brine (10 mL), dried over sodium sulfate anhydrous, and then the solution was concentrated under reduced pressure. The residue was purified by column chromatography (30% EtOAc/*n*-hexane) to give 3,12-Ac-19-Tr-14-deoxyandrographolide (**2c**) in 80% yield (18.7 mg) as a white solid, *R*_f 0.58 (40% EtOAc/*n*-hexane).

3,12-Ac-19-Tr-14-deoxyandrographolide (**2c**): Mp 84-87 °C; IR (Neat): 2932, 1760, 1738, 1370, 1237, 1029, 750 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.43 (6H, m, PhH), 7.32-7.25 (7H, m, H-14, PhH), 7.24–7.19 (3H, m, PhH), 5.61 (1H, dd, J = 9.5, 4.5 Hz, H-12), 4.83 (1H, brs, H-17b), 4.82 (2H, brs, H-15), 4.68 (1H, brs, H-17a), 4.52 (1H, dd, J = 12.0, 4.0, H-3), 3.31 (1H, d, J = 10.0 Hz, H-19b), 3.05 (1H, d, J = 10.0 Hz, H-19a), 2.32 (1H, dm, J = 12.0 Hz, H-7b), 2.15–2.02 (2H, m), 2.04 (3H, s, COCH₃), 2.00 (3H, s, COCH₃), 1.89-1.75 (4H, m), 1.67-1.02 (5H, m), 1.13 (3H, s, H-18), 0.22 (3H, s, H-20); ¹³C NMR (100 MHz, CDCl₃): δ 171.41, 170.81, 169.97, 148.23, 146.59, 144.24 (3 \times C), 132.59, 128.86 (6 \times C), 127.25 $(6 \times C)$, 126.81 $(3 \times C)$, 107.71, 86.84, 80.26, 70.03, 68.23, 62.22, 55.65, 52.14, 42.53, 38.94, 38.17, 36.73, 26.99, 24.92, 24.19, 22.91, 21.33, 21.08, 14.25; HRMS (ESI) m/z calcd for $C_{43}H_{48}O_7Na$ $[M + Na]^+$ 699.3298, found 699.3356.

General procedure for synthesis of compounds (2d-2f) Method A. The stirred solution of 14-deoxy-12hydroxyandrographolide (2a) (20.3 mg, 0.058 mmol) in acetic anhydride (1.0 mL) was heated at 70 °C for 2 h. The reaction mixture was diluted with EtOAc (20 mL) and quenched with saturated NaHCO₃. The solution mixture was extracted with EtOAc ($3 \times 20 \text{ mL}$). The combined organic layer was washed with brine (10 mL), dried over sodium sulfate anhydrous, and then concentrated under reduced pressure. The residue was purified by column chromatography (50% EtOAc/n-hexane) to give 19-Ac-14deoxy-12-hydroxyandrographolide (2d) in 24% yield (5.50 mg) as a white solid, $R_f 0.22$ (70% EtOAc/n-hexane), 3,19-Ac-14-deoxy-12-hydroxyandrographolide (2e) in 29% yield (7.20 mg) as a white solid, $R_f 0.56$ (70% EtOAc/n-hexane), and 3,12,19-Ac-14-deoxyandrographolide (2f) in 18% yield (5.10 mg) as a white solid, $R_f 0.69$ (50% EtOAc/n-hexane).

Method B. The stirred solution of 14-deoxy-12-hydroxyandrographolide (**2a**) (23.6 mg, 0.067 mmol) in acetic anhydride (1.0 mL) was heated at 145 °C for 1.5 h. The reaction mixture was diluted with EtOAc (20 mL) and

quenched with saturated NaHCO₃. The solution mixture was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (10 mL), dried over sodium sulfate anhydrous, and then concentrated under reduced pressure. The residue was purified by column chromatography (30% EtOAc/*n*-hexane) to give 3,12,19-Ac-14-deoxyandrographolide (**2f**) in 80% yield (25.7 mg) as a white solid, R_f 0.22 (30% EtOAc/*n*-hexane).

19-Ac-14-deoxy-12-hydroxyandrographolide (2d): Mp 177-190 °C; IR (Neat): 3142, 1738, 1404, 1259, 1047 cm^{-1} ; ¹H NMR (400 MHz, CDCl₃): δ 7.30 (1H, brs, H-14), 4.95 (1H, brs, H-17b), 4.85 (2H, brs, H-15), 4.77 (1H, brs, H-17a), 4.55 (1H, t, J = 7.0 Hz, H-12), 4.32 (1H, d, J =11.5 Hz, H-19b), 4.13 (1H, d, J = 11.5 Hz, H-19a), 3.32 (1H, dd, J = 12.0, 4.0 Hz, H-3), 2.60 (1H, brs, OH), 2.46(1H, ddd, J = 12.5, 3.5, 2.0 Hz, H-7b), 2.06 (3H, s, COCH₃), 2.09–2.02 (1H, m), 2.00–1.80 (4 H, m), 1.75-1.58 (4H, m), 1.52-1.17 (2H, m), 1.15 (3H, s, H-18), 0.70 (3H, s, H-20); 13 C NMR (100 MHz, CDCl₃): δ 172.93, 170.98, 148.10, 145.21, 136.11, 107.92, 78.86, 70.46, 67.59, 64.91, 55.41, 53.25, 42.45, 39.37, 38.24, 36.98, 30.27, 27.79, 24.45, 22.45, 21.09, 14.91; HRMS (ESI) m/z calcd for C₂₂H₃₂O₆Na [M+Na]⁺ 415.2097, found 415.2102.

3,19-Ac-14-deoxy-12-hydroxyandrographolide (**2e**): Mp 183–185 °C; IR (Neat): 3134, 1738, 1404, 1249, 1039, 894 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.27 (1H, brs, H-14), 4.93 (1H, brs, H-17b), 4.85 (2H, brs, H-15), 4.76 (1H, s, H-17a), 4.57 (1H, dd, J = 11.5, 5.0 Hz, H-3), 4.54–4.49 (1H, m, H-12), 4.34 (1H, d, J = 11.5 Hz, H-19b), 4.09 (1H, d, J = 11.5 Hz, H-19b), 4.09 (1H, d, J = 11.5 Hz, H-19b), 4.09 (1H, d, J = 11.5 Hz, H-19b), 2.03 (6H, s, $2 \times COCH_3$), 2.07–1.98 (1H, m), 1.95–1.82 (4H, m), 1.78–1.47 (4H, m), 1.31–1.15 (2H, m), 0.99 (3H, s, H-18), 0.72 (3H, s, H-20); ¹³C NMR (100 MHz, CDCl₃): δ 172.95, 170.85, 170.57, 147.75, 145.21, 135.99, 107.90, 79.76, 70.45, 67.24, 64.70, 55.40, 53.03, 41.28, 39.25, 38.32, 36.81, 30.32, 24.83, 24.19, 22.61, 21.16, 21.05, 14.63; HRMS (ESI) *m*/*z* calcd for C₂₄H₃₄O₇Na [M+Na]⁺ 457.2203, found 457.2237.

3,12,19-Ac-14-deoxyandrographolide (**2f**): Mp 138–142 ° C; IR (Neat): 2943, 1735, 1372, 1237, 1030 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.35 (1H, brs, H-14), 5.66 (1H, dd, J = 9.0, 4.5 Hz, H-12), 4.92 (1H, brs, H-17b), 4.84 (2H, brs, H-15), 4.78 (1 H, brs, H-17a), 4.57 (1H, dd, J = 12.0, 5.0 Hz, H-3), 4.34 (1H, d, J = 11.5 Hz, H-19b), 4.08 (1H, d, J = 11.5 Hz, H-19a), 2.39 (1H, dm, J = 10.5 Hz, H-7b), 2.19 (1H, ddd, J = 13.0, 9.0, 1.0 Hz), 2.06 (3H, s, COCH₃), 2.03 (6H, s, 2 × COCH₃), 1.95 (1H, ddd, J = 13.0, 11.0, 4.5 Hz), 1.90–1.80 (3H, m), 1.79–1.57 (2H, m), 1.54–1.45 (2H, m), 1.26 (1H, dm, J = 9.0 Hz), 1.18 (1H, td, J = 13.0, 4.5 Hz), 0.99 (3H, s, H-18), 0.71 (3H, s, H-20); ¹³C NMR (100 MHz, CDCl₃): δ 171.47, 170.89, 170.56, 170.00, 148.32, 146.35, 132.73, 108.12, 79.74, 70.09, 68.23, 64.73, 55.34,

52.19, 41.30, 39.15, 38.20, 36.72, 27.24, 24.81, 24.22, 22.60, 21.18, 21.09 (2×C), 14.59; HRMS (ESI) *m*/*z* calcd for $C_{26}H_{36}O_8Na$ [M+Na]⁺ 499.2308, found 499.2353.

General procedure for synthesis of compounds (2g-2i) To a stirred solution of 14-deoxy-12-hydroxyandrographolide (2a) in pyridine was added silyl chloride [TBSCl, triisopropyl chloride (TIPSCl) or TBDPSCl] at room temperature. After the stirring was continued at room temperature for 1–8 h, the reaction mixture was quenched with NH₄Cl, and extracted with EtOAc (3 × 20 mL). The combined organic la yer was washed with brine (10 mL), dried over sodium sulfate anhydrous, and then the solution was concentrated under reduced pressure. The residue was purified by column chromatography to give the desired products (2g-2i).

Synthesis of 19-TBS-14-deoxy-12-hydroxyandrographolide (**2g**) According to the general procedure, 14-deoxy-12-hydroxyandrographolide (**2a**) (40.8 mg, 0.116 mmol) with *tert*-butyldimethylsilyl chloride (TBDMSCl) (91.7 mg, 0.58 mmol) in pyridine (500 μ L) was stirred at room temperature for 1 h. The residue was purified by column chromatography (60% EtOAc/*n*-hexane) to afford the corresponding product (**2g**) in 80% yield (43.0 mg) as a white solid, $R_{\rm f}$ 0.54 (60% EtOAc/*n*-hexane).

19-TBS-14-deoxy-12-hydroxyandrographolide (2g): Mp 188–190 °C; IR (Neat): 3366, 2931, 1748, 1260, 1055, 750 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.28 (1H, brd, J =1.5 Hz, H-14), 4.90 (1H, brs, H-17b), 4.84 (2H, brs, H-15), 4.74 (1H, brs, H-17a), 4.52 (1H, dd, J = 13.0, 6.5 Hz, H-12), 4.33 (1H, d, J = 7.0 Hz, OH), 4.17 (1H, d, J = 10.5 Hz, H-19b), 3.36 (1H, d, J = 10.5 Hz, H-19a), 3.29 (1H, ddd, J = 11.0, 7.0, 4.0 Hz, H-3), 2.61 (1H, d, J = 6.5 Hz, OH), 2.41 (1H, ddd, J = 13.5, 4.0, 2.5 Hz, H-7b), 2.03 (1H, ddd, J = 13.5, 8.0, 1.5 Hz), 1.98-1.76 (5H, m), 1.74-1.55 (2H, m), 1.20 (3H, s, H-18), 1.31-1.15 (2H, m), 1.10 (1H, td, J = 13.0, 3.5 Hz), 0.88 (9H, s, SiC(CH₃)₃), 0.65 (3H, s, H-20), 0.06 (3H, s, SiCH₃), 0.05 (3H, s, SiCH₃); ¹³C NMR (100 MHz, CDCl₃): *δ* 172.96, 148.18, 145.07, 136.08, 107.72, 80.11, 70.43, 67.39, 65.17, 55.38, 53.23, 42.53, 39.26, 38.23, 36.94, 30.28, 28.56, 25.76 (3×C), 24.08, 23.12, 18.05, 15.59, -5.17, -5.18; HRMS (ESI) m/z calcd for C₂₆H₄₄O₅SiNa [M+Na]⁺ 487.2856, found 487.2895.

Synthesis of 19-TBDPS-14-deoxy-12-hydroxyandrographolide (**2h**) According to the general procedure, 14-deoxy-12-hydroxyandrographolide (**2a**) (41.9 mg, 0.119 mmol) with *tert*-butyldiphenylsilyl chloride (TBDPSCl) (150 μ L, 0.57 mmol) in pyridine (500 μ L) was stirred at room temperature for 1 h. The residue was purified by column chromatography (60% EtOAc/*n*-hexane) to afford

the corresponding product (2h) in 82% yield (57.6 mg) as a white solid, $R_{\rm f}$ 0.51 (50% EtOAc/*n*-hexane).

19-TBDPS-14-deoxy-12-hydroxyandrographolide (2h): Mp 71-73 °C; IR (Neat): 2933, 2859, 1753, 1054, 750 cm^{-1} ; ¹H NMR (400 MHz, CDCl₃): δ 7.68–7.61 (4H, m, PhH), 7.48-7.37 (6H, m, PhH), 7.24 (1H, brs, H-14), 4.83 (2H, brs, H-15), 4.81 (1H, brs, H-17b), 4.65 (1H, brs, H-17a), 4.58 (1H, dd, J = 12.5, 6.5 Hz, H-12), 4.40 (1H, d, J = 7.5 Hz, OH), 4.15 (1H, d, J = 10.0 Hz, H-19b), 3.33 (1H, d, J = 10.0 Hz, H-19a), 3.36-3.29 (1H, m, H-3), 2.54 (1H, d, J = 6.5 Hz, OH), 2.29 (1H, ddd, J = 13.0, 3.5, 2.5 Hz, H-7b), 2.02–1.71 (5H, m), 1.68–1.59 (2H, m), 1.51 (1H, d, J = 10.0 Hz), 1.30 (3H, s, H-18), 1.18-0.94 (3H, m), 1.04 (9H, s, SiC(CH₃)₃), 0.39 (3H, s, H-20); ¹³C NMR (100 MHz, CDCl₃): δ 172.94, 148.05, 145.07, 136.05, 135.70 $(2 \times C)$, 135.54 $(2 \times C)$, 132.38, 132.05, 129.99 $(2 \times C)$, 127.88 $(2 \times C)$, 127.81 $(2 \times C)$, 107.64, 80.29, 70.42, 67.38, 65.89, 55.40, 53.19, 42.83, 39.17, 38.12, 36.88, 30.21, 28.49, 26.80 (3 × C), 23.81, 23.11, 19.07, 15.38; HRMS (ESI) m/z calcd for $C_{36}H_{48}O_5SiNa$ $[M + Na]^+$ 611.3169, found 611.3221.

Synthesis of 19-TIPS-14-deoxy-12-hydroxyandrographolide (**2i**) According to the general procedure, 14-deoxy-12-hydroxyandrographolide (**2a**) (51.0 mg, 0.145 mmol) with TIPSC1 (0.30 mL, 1.40 mmol) in pyridine (500 μ L) was stirred at room temperature for 8 h. The residue was purified by column chromatography (60% EtOAc/*n*-hexane) to afford the corresponding product (**2i**) in 67% yield (49.1 mg) as a white solid, R_f 0.47 (60% EtOAc/*n*-hexane).

19-TIPS-14-deoxy-12-hydroxyandrographolide (2i): Mp 95-98 °C; IR (Neat): 3380, 2942, 2867, 1750, 1460, 1056, 883 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.27 (1H, brs, H-14), 4.90 (1H, brs, H-17b), 4.84 (2H, brs, H-15), 4.73 (1H, brs, H-17a), 4.56–4.49 (1H, m, H-12), 4.47 (1H, d, J = 7.0 Hz, OH), 4.29 (1H, d, J = 10.0 Hz, H-19b), 3.47 (1H, d, J = 10.0 Hz, H-19a), 3.30 (1H, ddd, J = 13.0, 7.0, 5.0 Hz, H-3), 2.62 (1H, brd, J = 5.0 Hz, OH), 2.41 (1H, dm, J = 13.0 Hz, H-7b), 2.03 (1H, ddd, J = 14.0, 8.0, 2.0 Hz), 1.96–1.76 (5H, m), 1.74–1.62 (1H, m), 1.57 (1H, d, *J* = 10.0 Hz), 1.27 (3H, s, H-18), 1.26–1.00 (6H, m), 1.07 (18H, d, J = 5.0 Hz, Si(CH(CH₃)₂)₃), 0.64 (3H, s, H-20); ¹³C NMR (100 MHz, CDCl₃): *b* 172.98, 148.11, 145.11, 136.07, 107.72, 80.20, 70.44, 67.31, 65.65, 55.32, 53.22, 42.74, 39.23, 38.21, 36.91, 30.27, 28.58, 24.05, 22.95, 17.91 (6 × C), 15.64, 11.63 (3 × C); HRMS (ESI) m/z calcd for C₂₉H₅₀O₅SiNa $[M + Na]^+$ 529.3326, found 529.3370.

General procedure for synthesis of compounds (2j-2l) To a stirred solution of 19-silylether-14-deoxy-12-hydroxyandrographolide (2g, 2h or 2i) in acetic anhydride (500 µL) was refluxed to 145 °C for 1–2.5 h. The reaction mixture was diluted with EtOAc (20 mL) and quenched with saturated NaHCO₃. The solution mixture was extracted with EtOAc $(3 \times 20 \text{ mL})$. The combined organic layer was washed with brine (10 mL), dried over sodium sulfate anhydrous, and then the solution was concentrated under reduced pressure. The residue was purified by column chromatography to give the desired products (2j-2l).

Synthesis of 19-TBS-3,12-Ac-14-deoxyandrographolide (**2j**) According to the general procedure, 19-TBS-14deoxy-12-hydroxyandrographolide (**2g**) (20.1 mg, 0.043 mmol) was refluxed at 145 °C for 1.15 h. The residue was purified by column chromatography (40% EtOAc/*n*-hexane) to afford the corresponding product (**2j**) in 81% yield (19.1 mg) as a white solid, $R_{\rm f}$ 0.42 (40% EtOAc/*n*-hexane).

19-TBS-3,12-Ac-14-deoxyandrographolide (2i): Mp 104-107 °C; IR (Neat): 2934, 1756, 1738, 1254, 1028, 752 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.35 (1H, brs, H-14), 5.66 (1H, dd, J = 9.5, 4.5 Hz, H-12), 4.90 (1H, brs, H-17b), 4.83 (2H, brs, H-15), 4.75 (1H, brs, H-17a), 4.56-4.53 (1H, m, H-3), 3.79 (1H, d, J = 10.5 Hz, H-19b), 3.57 (1H, d, J = 10.5 Hz, H-19a), 2.36 (1H, dm, J = 12.0 Hz, H-7b), 2.20 (1H, ddd, J = 13.5, 9.0, 1.0 Hz), 2.06 (3H, s, COCH₃), 2.04 (3H, s, $COCH_3$), 1.94 (1H, J = 13.5, 11.0, 5.0 Hz), 1.85–1.74 (3H, m), 1.73–1.63 (3H, m), 1.47 (1H, d, J =10.0 Hz), 1.21-1.11 (2H, m), 0.91 (3H, s, H-18), 0.87 (9H, s, SiC(CH₃)₃), 0.76 (3H, s, H-20), 0.01 (6H, s, Si(CH₃)₂); ¹³C NMR (100 MHz, CDCl₃): δ 171.44, 170.77, 170.00, 148.26, 147.05, 132.63, 107.56, 80.17, 70.04, 68.31, 63.59, 55.61, 52.31, 42.51, 39.25, 38.59, 37.06, 27.11, 25.85 (3 × C), 25.53, 24.34, 23.06, 21.27, 21.12, 18.20, 14.43, -5.17, -5.18; HRMS (ESI) m/z calcd for C₃₀H₄₈O₇SiNa [M +Na]⁺ 571.3067, found 571.3115.

Synthesis of 19-TBDPS-3,12-Ac-14-deoxyandrographolide (**2k**) According to the general procedure, 19-TBDPS-14-deoxy-12-hydroxyandrographolide (**2h**) (29.3 mg, 0.050 mmol) was refluxed at 145 °C for 2 h. The residue was purified by column chromatography (40% EtOAc/*n*-hexane) to afford the corresponding product (**2k**) in 70% yield (23.5 mg) as a white solid, R_f 0.49 (30% EtOAc/*n*-hexane).

19-TBDPS-3,12-Ac-14-deoxyandrographolide (**2k**): Mp 71–73 °C; IR (Neat): 2953, 1761, 1734, 1372, 1237, 1081, 1028, 704 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.70–7.63 (4H, m, PhH), 7.45–7.33 (6H, m, PhH), 7.26 (1H, brs, H-14), 5.65 (1H, dd, J = 9.5, 4.5 Hz, H-12), 4.90 (1H, brs, H-17b), 4.83 (2H, brs, H-15), 4.75 (1H, brs, H-17a), 4.53 (1H, dd, J = 11.5, 4.5 Hz, H-3), 3.77 (1H, d, J = 10.5 Hz, H-19b), 3.71 (1H, d, J = 10.5 Hz, H-19a), 2.38 (1H, dm, J = 12.5 Hz, H-7b), 2.22–2.13 (1H, m), 2.06 (3H, s, COCH₃), 1.90 (3H, s, COCH₃), 1.95–1.70 (5H, m), 1.66–1.43 (3H, m), 1.22–1.11 (2H, m), 1.04 (9H, s, SiC(CH₃)₃), 1.00 (3H, s, H-18), 0.62 (3H, s, H-20); ¹³C NMR (100 MHz, CDCl₃): δ 171.42, 170.73, 169.99, 148.27, 146.80, 135.80 (2 × C),

135.73 (2 × C), 133.54, 133.50, 132.62, 129.58, 129.52, 127.57 (2 × C), 127.49 (2 × C), 107.74, 80.07, 70.04, 68.27, 63.57, 55.54, 52.20, 43.07, 39.16, 38.39, 36.83, 27.05, 26.90 (3 × C), 25.36, 24.24, 22.71, 21.15, 21.11, 19.26, 14.62; HRMS (ESI) *m/z* calcd for $C_{40}H_{52}O_7SiNa$ [M + Na]⁺ 695.3380, found 695.3406.

Synthesis of 19-TIPS-3,12-Ac-14-deoxyandrographolide (**2l**) According to the general procedure, 19-TIPS-14-deoxy-12-hydroxyandrographolide (**2i**) (20.8 mg, 0.041 mmol) was refluxed at 145 °C for 2.5 h. The residue was purified by column chromatography (40% EtOAc/*n*-hexane) to afford the corresponding product (**2l**) in 63% yield (15.2 mg) as a white solid, R_f 0.74 (40% EtOAc/*n*-hexane).

19-TIPS-3,12-Ac-14-deoxyandrographolide (21): Mp 156-160 °C; IR (Neat): 3464, 2946, 1738, 1240, 1097, 752 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.35 (1H, brs, H-14), 5.66 (1H, dd, J = 9.5, 4.5 Hz, H-12), 4.91 (1H, brs, H-17b), 4.84 (2H, brs, H-15), 4.75 (1H, brs, H-17a), 4.55 (1H, dd, J = 11.0, 5.5 Hz, H-3), 3.85 (1H, d, J = 10.5 Hz, H-19b), 3.78 (1H, d, J = 10.5 Hz, H-19a), 2.37 (1H, dm, J =13.0 Hz, H-7b), 2.20 (1H, ddd, J = 13.0, 9.0, 1.0 Hz), 2.07 $(3H, s, COCH_3), 2.03 (3H, s, COCH_3), 1.94 (1H, ddd, J =$ 13.5, 11.0, 4.5 Hz), 1.87-1.76 (3H, m), 1.71-1.55 (3H, m), 1.47 (1H, d, J = 10.0 Hz), 1.22–0.93 (5H, m), 1.06 (18H, d, J = 4.5 Hz, Si(CH(CH₃)₂)₃), 0.98 (3H, s, H-18), 0.74 (3H, s, H-20); ¹³C NMR (100 MHz, CDCl₃): δ 171.46, 170.84, 170.02, 148.31, 146.93, 132.61, 107.66, 80.18, 70.06, 68.30, 63.41, 55.58, 52.24, 43.07, 39.21, 38.44, 36.94, 27.06, 25.33, 24.32, 22.72, 21.25, 21.12, 18.07 $(6 \times C)$, 14.73, 11.91 (3 × C); HRMS (ESI) m/z calcd for $C_{33}H_{54}O_7SiNa [M+Na]^+ 613.3537$, found 613.3516.

Synthesis of 14-deoxy-12-hydroxy-3,19-isopropylideneandrographolide (2m) To a stirred solution of 14-deoxy-12hydroxyandrographolide (2a) in acetone (45.0 mL) was added 2,2-dimethoxypropane (1.26 mL, 10.3 mmol) and followed by addition of pyridinium p-toluenesulfonate (PPTS) (14.3 mg, 0.0571 mmol). After the stirring was continued at room temperature for 2 h, the solvent was removed by evaporator. The residue was diluted with EtOAc (50 mL), and quenched with saturated NaHCO₃ and H₂O. The solution mixture was extracted with EtOAc (3 \times 50 mL). The combined organic layer was washed with brine (20 mL), dried over sodium sulfate anhydrous, and then the solution was concentrated under reduced pressure. The residue was purified by column chromatography (30% EtOAc/n-hexane) to give 14-deoxy-12-hydroxy-3,19-isopropylideneandrographolide (2m) in 82% yield (65.6 mg) as a white solid, $R_f 0.50$ (70% EtOAc/n-hexane).

14-Deoxy-12-hydroxy-3,19-isopropylideneandrographolide (**2m**): Mp 102–104 °C; IR (Neat): 3258, 2946, 1745, 1405, 1034 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.30 (1H, brs, H-14), 4.94 (1H, brs, H-17b), 4.85 (2H, brs, H-15), 4.77 (1H, brs, H-17a), 4.55 (1H, brs, H-12), 4.15–4.10 (1H, m, OH), 3.96 (1H, d, J = 11.5 Hz, H-19b), 3.48 (1H, d, J =8.0 Hz, H-3), 3.17 (1H, d, J = 11.5 Hz, H-19a), 2.43 (1H, d, J = 12.5 Hz, H-7b), 2.07–1.87 (4H, m), 1.81–1.69 (3H, m), 1.42 (3H, s, H-21), 1.37 (3H, s, H-22), 1.32–1.14 (4H, m), 1.20 (3H, s, H-18), 0.96 (3H, s, H-20); ¹³C NMR (100 MHz, CDCl₃): δ 173.02, 148.61, 145.32, 136.09, 107.98, 99.07, 76.44, 70.49, 67.60, 63.84, 53.18, 52.44, 38.71, 38.09, 37.87, 34.30, 30.45, 27.27, 26.07, 25.28, 25.02, 23.46, 16.32.

Synthesis of 12-TBS-14-deoxy-3,19-isopropylideneandrographolide (2n) To a stirred solution of 14-deoxy-12hydroxy-3,19-isopropylideneandrographolide (2m) (388 mg, 0.994 mmol) in DMF (10.0 mL) was added TBDMSCI (225 mg, 1.49 mmol) and followed by addition of imidazole (203 mg, 2.98 mmol). After the stirring was continued at room temperature for 6 h, the reaction mixture was diluted with EtOAc (50 mL) and quenched with saturated NH₄Cl and H₂O. The solution mixture was extracted with EtOAc (3 \times 50 mL). The combined organic layer was washed with brine (20 mL), dried over sodium sulfate anhydrous, and then concentrated under reduced pressure. The residue was purified by column chromatography (20% EtOAc/n-hexane) to give 12-TBS-14-deoxy-3,19-isopropylideneandrographolide (2n) in 57% yield (285 mg) as a white solid, $R_{\rm f}$ 0.64 (20%) EtOAc/n-hexane).

12-TBS-14-deoxy-3,19-isopropylideneandrographolide (**2n**): Mp 118–120 °C; IR (Neat): 2944, 1753, 1456, 1074, 842 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.27 (1H, brs, H-14), 4.81 (1H, brs, H-17b), 4.77 (1H, brs, H-15b), 4.74 (1H, s, H-15a), 4.65–4.60 (1H, m, H-12), 4.59 (1H, brs, H-17a), 3.93 (1H, d, *J* = 11.5 Hz, H-19b), 3.47 (1H, dd, *J* = 8.5, 3.5 Hz, H-3), 3.14 (1H, d, *J* = 11.5 Hz, H-19a), 2.35 (1H, dm, *J* = 13.0 Hz, H-7b), 2.00–1.65 (7H, m), 1.40 (3H, s, H-21), 1.36 (3H, s, H-22), 1.25–1.15 (4H, m), 1.17 (3H, s, H-18), 0.89 (9H, s, SiC(*CH*₃)₃), 0.88 (3H, s, H-20), 0.07 (3H, s, Si*CH*₃), -0.02 (3H, s, Si*CH*₃); ¹³C NMR (100 MHz, CDCl₃): δ 172.75, 148.33, 145.22, 138.42, 107.25, 99.15, 76.15, 70.29, 66.93, 63.99, 52.15, 51.18, 38.43, 38.03, 37.96, 33.86, 31.77, 26.93, 25.94, 25.80 (3×C), 25.18, 24.77, 23.51, 18.06, 16.75, -4.79, -4.87.

Synthesis of 12-TBS-14-deoxyandrographolide (**2o**) 12-TBS-14-deoxy-3,19-isopropylideneandrographolide (**2n**) (43.0 mg, 0.085 mmol) was dissolved in a solution of CH₃COOH/H₂O (7:3) (1 mL). The reaction was stirred at room temperature for 15 min. After the reaction was completed conversion, identified by TLC, the reaction mixture was diluted with EtOAc (10 mL) and quenched with saturated NaHCO₃. The solution mixture was extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (10 mL), dried over sodium sulfate anhydrous, and then concentrated under reduced pressure. The residue was purified by column chromatography (20% EtOAc) to give 12-TBS-14-deoxyandrographolide (**20**) in 72% yield (28.6 mg) as a white solid, $R_{\rm f}$ 0.07 (20% EtOAc/ *n*-hexane).

12-TBS-14-deoxyandrographolide (**20**): Mp 146–148 °C; IR (Neat): 3139, 1746, 1404, 1248, 1045, 890 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.26 (1H, d, J = 1.0 Hz, H-14), 4.80 (1H, brs, H-17b), 4.77 (1H, t, J = 1.5 Hz, H-12), 4.75 (1H, brs, H-17a), 4.57 (2H, brs, H-15), 4.14 (1H, d, J = 11.0 Hz, H-19b), 3.43 (1H, dd, J = 10.0, 5.0 Hz, H-3), 3.28 (1H, d, J = 11.0 Hz, H-19a), 2.36 (1H, dm, J = 12.0 Hz, H-7b), 1.91–1.74 (7H, m), 1.60 (1H, t, J = 5.0 Hz), 1.30–1.02 (3H, m), 1.22 (3H, s, H-18), 0.87 (9H, s, SiC(*CH*₃)₃), 0.59 (3H, s, H-20), 0.06 (3H, s, SiC*H*₃), -0.04 (3H, s, Si*CH*₃); ¹³C NMR (100 MHz, CDCl₃): δ 172.62, 147.93, 145.32, 138.48, 107.15, 80.66, 70.21, 67.01, 64.15, 55.41, 51.49, 42.92, 39.07, 38.07, 36.78, 31.88, 28.24, 25.78 (3 × C), 24.03, 22.59, 18.02, 15.32, -4.71, -4.80.

Synthesis of 3,19-Ac-12-TBS-14-deoxyandrographolide (**2p**) To а stirred solution of 12-TBS-14deoxyandrographolide (20) (15.0 mg, 0.032 mmol) in acetic anhydride (1.0 mL) was refluxed to 145 °C for 1 h. The reaction mixture was diluted with EtOAc (10 mL) and quenched with saturated NaHCO₃. The solution mixture was extracted with EtOAc ($3 \times 10 \text{ mL}$). The combined organic layer was washed with brine (10 mL), dried over sodium sulfate anhydrous, and then concentrated under reduced pressure. The residue was purified by column chromatography (20% EtOAc/n-hexane) to give 3,19-Ac-12-TBS-14-deoxyandrographolide (2p) in 94% yield (16.5 mg) as a white solid, $R_f 0.40$ (20% EtOAc/*n*-hexane).

3.19-Ac-12-TBS-14-deoxyandrographolide (2p): Mp 108-110 °C; IR (Neat): 3132, 2959, 1743, 1402, 1248, 1043, 846 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.28 (1H, d, J = 1.0 Hz, H-14), 4.84 (1H, brs, H-17b), 4.80-4.77 (2H, m, H-15), 4.61 (1H, brs, H-17a), 4.59-4.56 (1H, m, H-12), 4.55 (1H, dd, J = 11.0, 5.0 Hz, H-3), 4.33 (1H, d, J = 11.5 Hz, H-19b), 4.07 (1H, d, J = 11.5 Hz, H-19a), 2.37 (1H, dm, J = 12.5 Hz, H-7b), 2.03 (3H, s, COCH₃), 2.02 (3H, s, COCH₃), 1.92–1.64 (7H, m), 1.62–1.13 (4H, m), 0.99 (3H, s, H-18), 0.87 (9H, s, SiC(CH₃)₃), 0.68 (3H, s, H-20), 0.06 (3H, s, SiCH₃), -0.04 (3H, s, SiCH₃); ¹³C NMR (100 MHz, CDCl₃): *b* 172.63, 170.82, 170.53, 147.72, 145.44, 138.58, 107.16, 79.96, 70.24, 66.76, 64.73, 55.46, 51.53, 41.32, 39.14, 38.18, 36.80, 32.26, 25.77 (3×C), 24.90, 24.23, 22.55, 21.15, 21.02, 18.01, 14.69, -4.71, -4.79.

Evaluation of cytotoxic activity The cytotoxic activities of extracts and compounds were determined using the standard sulforhodamine B (SRB) assay in 96-well microtiter plates.

Ellipticine was used as a positive control. Six cell lines were employed, including P-388 (mouse lymphoid neoplasma), KB (human epidermoid carcinoma in the mouth), Col-2 (human colon cancer), MCF-7 (human breast cancer), Lu-1 (human lung cancer) and ASK (rat glioma).

Results and discussion

Trityl (triphenylmethyl), acetyl or silyl groups such as *tert*butyldimethylsilyl (TBS), *tert*-butyldiphenylsilyl (TBDPS)

Scheme 1 Reagents and conditions: (a) TrCl, pyridine, 80 °C, 6 h, 72%; (b) Ac₂O, 145 ° C, 3 h, 80%; (c) Ac₂O, 70 °C, 2 h, total 71%; (d) TBSCl, pyridine, rt, 1 h, (2g) 80%; TBDPSCl; pyridine, rt, 1 h, (2h) 82%; TIPSCl, pyridine, rt, 8 h, (2i) 67%; (e) Ac₂O, 145 °C, (2j) 81%; (2k) 70%; (2l) 63%

Scheme 2 Reagents and conditions: (a) 2,2dimethoxypropane, PPTS, acetone, rt, 2 h, 82%; (b) TBSCl, imidazole, DMF, rt, 6 h, 57%; (c) AcOH/H₂O (7:3), rt, 15 min, 72%; (d) Ac₂O, 145 °C, 1 h, 94%; (e) mCPBA, CH₂Cl₂/ MeOH, 60% and triisopropylsilyl (TIPS) were introduced to the 14deoxy-12-hydroxyandrographolide analog **2a** as shown in Scheme 1. Compounds **2b**, **2d** and **2g–2i** were obtained in moderate to high yields from reactions of compound **2a** and pyridine in the presence of TrCl, acetic anhydride and trialkylsilyl-chloride. Acetylation of the resulting analogs of hydroxyl groups at C-3 and/or C-12 led to the new compounds **2c**, **2e**, **2f** and **2j–2l** in high yields (Kandanur et al. 2015).

Compounds 2m-2p were prepared from 2a (Scheme 2). Conversion of hydroxyl groups at C-3 and C-19 with

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							Ľ	0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								Q III			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Compd.				ED ₅₀ (μM) (SR	B assay)					ED ₅₀ ratios relative to the 2 a
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	no.	\mathbb{R}^{1}	\mathbb{R}^2	\mathbb{R}^{3}	P-388	KB	COL-2	MCF-7	LU-1	ASK	
3 Epoxy-14-devxy-12 >100 124.00 124.01 135.04 135.04.01 135.04.01 135.04.01	2a	14-deo: hydrox	xy-12- yandrogra	apholide	3.65 ± 0.18	68.37 ± 0.08	41.92 ± 3.12	73.56 ± 1.67	40.96 ± 1.26	71.26 ± 2.12	Ι
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	e	Epoxy- hydrox	14-deoxy yandrogr	√-12- apholide	>100	>100	>100	>100	>100	>100	I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2b	Н	Η	CPh ₃	2.51 ± 0.07	3.30 ± 0.01	3.74 ± 0.03	4.51 ± 0.09	3.22 ± 0.01	3.19 ± 0.01	1.4–22.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2c	Ac	Ac	CPh_3	0.74 ± 0.04	3.98 ± 0.24	3.33 ± 0.07	8.26 ± 0.13	5.93 ± 0.05	4.77 ± 0.12	4.9–17.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2d	Н	Η	Ac	1.91 ± 0.03	52.06 ± 0.44	36.69 ± 1.02	59.64 ± 2.83	38.44 ± 0.69	69.08 ± 5.35	1.0-1.9
2f Ac	2e	Н	Ac	Ac	0.34 ± 0.01	41.26 ± 1.94	17.95 ± 0.05	18.53 ± 0.54	15.07 ± 0.28	34.24 ± 3.00	1.7-4.0
26 H H TBS >100 >100 >100 >100 271±0.61 - 21 H H TBDPS 2.63±0.02 3.99±0.03 6.01±0.14 5.18±0.03 3.36±0.02 3.28±0.007 114-217 21 Ac Ac TBDPS 2.65±0.02 3.99±0.03 6.01±0.14 5.18±0.03 3.36±0.02 3.39±0.04 1.4-210 21 Ac Ac TBDPS 2.24±0.19 6.80±0.05 4.75±0.12 8.13±0.04 2.09±0.02 1.94±0.04 1.4-210 21 Ac Ac TBD 2.24±0.19 6.80±0.05 4.75±0.17 9.13±0.01 6.87±0.02 7.55±0.01 1.4-210 21 Ac Ac TBD 1.75±0.12 6.88±0.03 4.77±0.17 9.13±0.001 6.87±0.03 7.55±0.02 2.100.1 1.4-10.1 21 Ac Ac TBD 3.35±0.27 66.80±1.04 4.75 ± 0.13 3.55 ± 0.02 $2.1-10.1$ 21 Ac Ac TBD 3.	2f	Ac	Ac	Ac	5.80 ± 0.38	>100	77.86 ± 2.33	79.78 ± 0.06	61.35 ± 0.61	59.96 ± 1.29	0-1.2
2h H H TBDPS 2.63 ± 0.02 3.99 ± 0.03 6.01 ± 0.14 5.18 ± 0.03 3.36 ± 0.02 3.28 ± 0.07 $1.4-21.7$ 2i H H TPS 2.68 ± 0.05 4.36 ± 0.05 5.12 ± 0.05 5.48 ± 0.14 3.55 ± 0.09 3.39 ± 0.04 $1.4-21.0$ 2i Ac Ac TPS 0.55 ± 0.03 2.35 ± 0.03 2.00 ± 0.16 5.12 ± 0.04 5.55 ± 0.02 3.39 ± 0.04 $1.4-21.0$ 2i Ac Ac TPS 1.75 ± 0.12 6.80 ± 0.05 4.75 ± 0.09 8.58 ± 0.04 5.55 ± 0.10 3.39 ± 0.04 $1.4-21.0$ 2in Ac Ac TPS 1.75 ± 0.12 6.80 ± 1.04 4.35 ± 0.01 5.547 ± 6.54 42.81 ± 2.78 60.81 ± 2.37 $1.0-1.2$ 2in H H 3.35 ± 0.27 66.80 ± 1.07 4.36 ± 6.00 5.547 ± 6.54 42.81 ± 2.78 60.81 ± 2.37 $1.0-1.2$ 2in TBS H H 15.38 ± 0.04 43.5 ± 6.06 5.547 ± 6.54 42.81 ± 2.78 60.81 ± 2.37 <th< th=""><th>2g</th><td>Н</td><td>Η</td><td>TBS</td><td>>100</td><td>>100</td><td>>100</td><td>>100</td><td>>100</td><td>29.71 ± 0.61</td><td>I</td></th<>	2g	Н	Η	TBS	>100	>100	>100	>100	>100	29.71 ± 0.61	I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2h	Н	Η	TBDPS	2.63 ± 0.02	3.99 ± 0.03	6.01 ± 0.14	5.18 ± 0.03	3.36 ± 0.02	3.28 ± 0.007	1.4–21.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2i	Η	Η	SdIT	2.68 ± 0.05	4.36 ± 0.05	5.12 ± 0.05	5.48 ± 0.14	3.55 ± 0.09	3.39 ± 0.04	1.4–21.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2j	Ac	Ac	TBS	0.55 ± 0.03	2.35 ± 0.03	2.00 ± 0.18	2.13 ± 0.04	2.09 ± 0.02	1.98 ± 0.04	6.6-35.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2k	Ac	Ac	TBDPS	2.24 ± 0.19	6.80 ± 0.05	4.75 ± 0.09	8.58 ± 0.04	5.55 ± 0.10	9.62 ± 0.01	1.6-10.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	Ac	Ac	SdIT	1.75 ± 0.12	6.85 ± 0.03	4.77 ± 0.17	9.13 ± 0.001	6.87 ± 0.03	7.55 ± 0.02	2.1-10.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2m	Н		×	3.35 ± 0.27	66.80 ± 1.04	43.6 ± 6.00	55.47 ± 6.54	42.81 ± 2.78	60.81 ± 2.37	1.0-1.2
20TBSHI15.38 \pm 0.47>100>100>1000.14 $-$ 2pTBSAcAc2.36 \pm 0.047.25 \pm 0.3315.45 \pm 0.1511.73 \pm 0.17 8.73 ± 0.04 $0.5-3.8$ $1.5-9.4$ 1Andrographolide2.25 \pm 0.1927.37 \pm 1.0513.6 \pm 0.4115.4 \pm 0.2112.98 \pm 0.1516.18 \pm 0.27 $1.6-4.8$ 1Bilipticine2.44 \pm 0.172.46 \pm 0.11 2.72 ± 0.07 2.71 ± 0.21 1.62 ± 0.01 3.56 ± 0.37	2n	TBS		Ň	11.39 ± 0.61	58.79 ± 1.07	>100	83.30 ± 1.60	47.49 ± 1.10	>100	I
2p TBSAcAc2.36 \pm 0.047.25 \pm 0.3315.45 \pm 0.1511.73 \pm 0.178.73 \pm 0.040.5-3.81.5-9.41Andrographolide2.25 \pm 0.1927.37 \pm 1.0513.6 \pm 0.4115.4 \pm 0.2112.98 \pm 0.1516.18 \pm 0.271.6-4.8Ellipticine2.44 \pm 0.172.46 \pm 0.112.72 \pm 0.072.71 \pm 0.211.62 \pm 0.013.56 \pm 0.37	20	TBS	Н	Н	15.38 ± 0.47	>100	>100	>100	>100	0.14	I
1 Andrographolide 2.25 ± 0.19 27.37 ± 1.05 13.6 ± 0.41 15.4 ± 0.21 12.98 ± 0.15 16.18 ± 0.27 $1.6-4.8$ Ellipticine 2.44 ± 0.17 2.46 ± 0.11 2.72 ± 0.07 2.71 ± 0.21 1.62 ± 0.01 3.56 ± 0.37	2p	TBS	Ac	Ac	2.36 ± 0.04	7.25 ± 0.33	15.45 ± 0.15	11.73 ± 0.17	8.73 ± 0.04	0.5-3.8	1.5-9.4
Ellipticine 2.44 ± 0.17 2.46 ± 0.11 2.72 ± 0.07 2.71 ± 0.21 1.62 ± 0.01 3.56 ± 0.37	1	Androg	grapholide	e)	2.25 ± 0.19	27.37 ± 1.05	13.6 ± 0.41	15.4 ± 0.21	12.98 ± 0.15	16.18 ± 0.27	1.6–4.8
	Ellipticine				2.44 ± 0.17	2.46 ± 0.11	2.72 ± 0.07	2.71 ± 0.21	1.62 ± 0.01	3.56 ± 0.37	

Table 1 Cytotoxic activity of 14-deoxy-12-hydroxyandrographolide analogs as µM causing 50% growth inhibition against six human cancer cells

 $\underline{\textcircled{O}}$ Springer

acetonide afforded **2m** in high yields. Silylation of the hydroxyl group at C-12 generated TBS-ether **2n**, which was then treated with acetic acid solution for deprotection of acetonide to produce **2o**, followed by acetylation to generate compound **2p**. Epoxidation and deprotection of acetonide group of **2m** with MCPBA produced epoxy derivative **3**.

Cytotoxic activity of andrographolide, the parent compound **1**, 14-deoxy-12-hydroxyandrographolide **2a** and its synthetic analogs were evaluated in vitro against six cancer cell lines; P-388 (murine leukemia cell line), KB (human epidermoid carcinoma of the mouth), COL-2 (human colon cancer), MCF-7 (human breast cancer), LU-1 (human lung cancer) and ASK (rat glioma) using SRB assay. All tested analogs were dissolved in DMSO (0.1%). Ellipticine, a potent anti-cancer agent was used as a positive control.

of Comparative cytotoxicities 14-deoxy-12hydroxyandrographolide 2a and andrographolide 1, found 2a to have the lower activity in terms of the concentration, μ M, causing 50% growth inhibition (ED₅₀; Table 1). Significant improvement in cytotoxic activity of 2a occurred when a trityl or silvl-ether group such as TBDPS and TIPS was introduced at C-19 of 2a. Interestingly, analogs 2b, 2h and 2i demonstrated 9-20- fold increases in cytotoxicity in all cell lines except on P-388 cancer cells, relative to that of the parent 2a. Moreover, these three compounds exhibited greater toxicity against ASK cancer cells than the reference drug, ellipticin. These results suggested that substitution at C-19 played a critical role in the enhanced activity and might be an effective moiety to improve cytotoxic potency of the scaffold. Epoxidation of 2a to obtain 3 led to a dramatic increase in cytotoxicity.

Introduction of acetyl group to the C-19 position of 2a to generate 2d lowered cytotoxicity relative to those with tritylanalogs and silyl-analogs, but demonstrated better selectivity on P-388 cancer cells than other analogs in these series. Addition of acetyl group to C-3 to produce 2e, gave similar activity to that of 2d. Analog 2g with TBS-ether at C-19 showed almost no activity in all cell lines in accord with 20, which contained TBS-ether at C-14. Interestingly, when acetyl groups were introduced at the remaining hydroxyl groups of 2g and 2o to give analogs 2j and 2p, there was significant improvement in cytotoxic activity. Cytotoxicity of 2j was highest in this series, indeed 6-35 times greater than that of the corresponding parent 2a and much stronger than that of ellipticin in all cell lines except LU-1. Interestingly, introduction of two acetyl groups at C-3 and C-14 of trityl-analog 2b to give analog 2c, silvl analog 2h and 2i to generate analogs 2k and 2l, did not improve cytotoxicity compared to those without acetyl in contrast to the response to 2j. Further, acetonide moiety on 2m and 2n dramatically decreased cytotoxicity for all cell lines.

Our previous work (Sirion et al. 2012), indicates 14deoxy-12-hydroxyandrographolide analog **2j** showed better Comparison of cytotoxic activities of andrographolide (1) and 14-deoxy-12-hydroxyandrographolide (2a) analogs against six human cancer cell lines Table 2

🖄 Springer

Comp.	\mathbb{R}^1	\mathbb{R}^2	R ³	Lipophilicity LogP ^a
2a	14-deox hydroxy	xy-12- /andrograp	bholide	0.81
3	Epoxy- hydroxy	14-deoxy- /andrograp	12- pholide	0.13
2b	Н	Н	CPh ₃	6.26
2c	Ac	Ac	CPh ₃	7.67
2d	Н	Н	Ac	1.51
2e	Н	Ac	Ac	2.21
2f	Ac	Ac	Ac	2.92
2g	Н	Н	TBS	4.13
2h	Н	Н	TBDPS	6.00
2i	Н	Н	TIPS	3.64
2j	Ac	Ac	TBS	5.54
2k	Ac	Ac	TBDPS	7.41
21	Ac	Ac	TIPS	5.05
2m	Н		×°	2.70
2n	TBS		×°	6.03
20	TBS	Н	Н	4.13
2p	TBS	Ac	Ac	5.54
1	Androg	rapholide		1.05

 Table 3 The lipophilicity calculation data of 14-deoxy-12hydroxyandrographolide analogs

^a Lipophilicity was calculated using the Molinspiration online property calculation toolkit (http://www.molinspiration.com)

activity over the same substituted andrographolide analog (3) in all human cancer cell line except P-388 and ASK (Table 2). Compared with the most potent C-19, trityl-andrographolide analog (4) in the previous work, 2j exhibited greater cytotoxicity than that of compound (4) in all human cancer cell line except on P-388 and LU-1.

The results of this study indicated that modification of hydroxyl groups of the 14-deoxy-12hydroxyandrographolide scaffold in vitro yielded greater cancer toxicity potential than modifications of andrographolide scaffold 3 with the same substitutions. The presence of the *exo*-alkene between C-12 and C-13 of α alkylidene-y-butyrolactone moiety of andrographolide was not important to cytotoxicity contrary to earlier reports (Das et al. 2010; He et al. 2003). Cytotoxicity found for the major andrographolide and minor analogs 2a seems directly dependent on their lipophilicity by introducing suitable substitution groups at C-3, C-14 and C-19 of andrographolide based compounds. As shown in Table 3, lipophilicity calculations suggested that activity of high activity compounds such as 2b, 2h and 2i increased directly with LogP.

In summary, we have synthesized a series of 14-deoxy-12-hydroxyandrographolide analogs and examined the cytotoxicity of this scafford as compared to the corresponding parent compound and the reference anti cancer agent, ellipticin. An evaluation of the synthetic analogs indicated the position and the types of substitutions at C-19, C-3 and C-14 of 14-deoxy-12-hydroxyandrographolidescaffold that played an important role in cytotoxic activity. Increasing lipophilicity by introducing of tert-butyl-dimethylsilyl group at C-19 and acetyl at C-3 and C-14 led to compound (2j) which is the most active compound in this series. It exhibited the highest activity, 6-35 times higher than that of the natural parent compound and much stronger than that of ellipticin for all cell lines except LU-1. With elevated cytotoxities and simple preparation, the new synthetic 14-deoxy-12-hydroxyandrographolide derivatives of the minor component from A. paniculata may well serve as a new class of anticancer compounds.

Acknowledgements This work was supported by Research Grant of Burapha University through National Research Council of Thailand (39/2557) and the Center of Excellence for Innovation in Chemistry (PERCH-CIC). Partial support from the Strategic Basic Research Grant of The Thailand Research Fund to R.S. (DBG5680004) and A.S. (DBG5980003) are gratefully acknowledged. Special thanks to Prof. Dr Frederick W. H. Beamish, Faculty of Science, Burapha University, for his comments and English correction.

Conflict of interest The authors declare that they have no conflict of interest.

References

- Balmain A, Connolly JD (1973) Minor diterpenoid constituents of Andrographis paniculata Nees. J Chem Soc Perkin Trans 1:1247–1251
- Calabrese C, Berman SH, Babish JG, Ma X, Shinto L, Dorr M, Wells K, Wenner CA, Standish LJ (2000) A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phytother Res 14:333–338
- Chen D, Song Y, Lu Y, Xue X (2013) Synthesis and in vitro cytotoxicity of andrographolide-19-oic acid analogues as anti-cancer agents. Bioorg Med Chem Lett 23:3166–3169
- Chen L, Zhu H, Wang R, Zhou K, Jing Y, Qiu F (2008) ent-Labdane diterpenoid lactone stereoisomers from *Andrographis paniculata*. J Nat Prod 71:852–855
- Dai GF, Xu HW, Wang JF, Liu FW, Liu HM (2006) Studies on the novel α-glucosidase inhibitory activity and structure–activity relationships for andrographolide analogues. Bioorg Med Chem Lett 16:2710–2713
- Das B, Chowdhury C, Kumar D, Sen R, Roy R, Das P, Chatterjee M (2010) Synthesis, cytotoxicity, and structure–activity relationship (SAR) studies of andrographolide analogues as anti-cancer agent. Bioorg Med Chem Lett 20:6947–6950
- Fan QQ, Wang QJ, Zeng BB, Wu YL, Ji H (2010) Synthesis and antitumor effect of novel andrographolide derivative. J China Pharm Univ 41:326–332
- Handa SS, Sharma A (1990) Hepatoprotective activity of andrographolide against galactosamine and paracetamol intoxication in rats. Ind J Med Res 92:276–283
- He X, Li J, Gao H, Qiu F, Hu K, Cui X, Yao X (2003) Four new andrographolide metabolites in rats. Tetrahedron 59:6603–6607

- Jada SR, Hamzah AS, Lajis NH, Saad MS, Stevens MFG, Stanslas J (2006) Semisynthesis and cytotoxic activities of andrographolide analogues. J Enzyme Inhib Med Chem 21:145–155
- Jada SR, Subur GS, Matthews C, Hamzah AS, Lajis NH, Saad MS, Stevens MFG, Stanslas J (2007) Semisynthesis and in vitro anticancer activities of andrographolide analogues. Phytochemistry 68:904–912
- Kandanur SGS, Golakoti NR, Nanduri S (2015) Synthesis and in vitro cytotoxicity of novel C-12 substituted-14-deoxy-andrographolide derivatives as potent anti-cancer agents. Bioorg Med Chem Lett 25:5781–5786
- Kasemsook S, Sirion U, Suksen K, Piyachaturawat P, Suksamrarn A, Saeeng R (2013) 12-Amino-andrographolide analogues: synthesis and cytotoxic activity. Arch Pharm Res 36:1454–1464
- Kleipool RJC (1952) Constituents of Andrographis paniculata Nees. Nature 169:33–34
- Kumar RA, Sridevi K, Kumar NV, Nanduri S, Rajagopal S (2004) Anticancer and immunostimulatory compounds from Andrographis paniculata. J Pharmacol 92:291–295
- Li J, Huang W, Zhang H, Wang X, Zhou H (2007) Synthesis of andrographolide derivatives and their TNF-γ and IL-6 expression inhibitory activities. Bioorg Med Chem Lett 17:6891–6894
- Matsuda T, Kuroyanaki M, Sukiyama S, Umehara K (1994) Cell differentiation-inducing diterpenes from *Andrographis paniculata Nees*. Chem Pharm Bull 42:1216–1225
- Misra P, Pal NL, Guru PY, Katiyar JC, Srivastava V, Tandon JS (1992) Antimalarial activity of Andrographis paniculata (kalmegh) against Plasmodim berghei NK 65 in Mastomys natalensis. Int J Pharmacogn 30:263–274
- Nateewattana J, Saeeng R, Kasemsook S, Suksen K, Dutta S, Jariyawat S, Chairoungdua A, Suksamrarn A, Piyachaturawat P

(2013) Inhibition of topoisomerase II α activity and induction of apoptosis in mammalian cells by semi-synthetic andrographolide analogues. Invest New Drugs 31:320–332

- Reddy VL, Reddy SM, Ravikanth V, Krishnaiah P, Goud TV, Rao TP, Ram TS, Gonnade RG, Bhadbhade M, Venkateswarlu Y (2005) New bis-andrographolide ether from *Andrographis paniculata Nees* and evaluation of anti-HIV activity. Nat Prod Res 19:223–230
- Shen YH, Li RT, Xiao WL, Xu G, Lin ZW, Zhao QS, Sun HD (2006) ent-Labdane diterpenoids from Andrographis paniculata. J Nat Prod 69:319–322
- Singha PK, Roy S, Dey S (2003) Antimicrobial activity of Andrographis paniculata. Fitoterapia 74:692–694
- Sirion U, Kasemsook S, Suksen K, Piyachaturawat P, Suksamrarn A, Saeeng R (2012) New substituted C-19-andrographolide analogues with potent cytotoxic activities. Bioorg Med Chem Lett 22:49–52
- Siripong P, Kongkathip B, Preechanukool K, Picha P, Tunsuwan K, Taylor WC (1992) Cytotoxic diterpenoid constituents from Andrographis paniculata, Nees leaves. J Sci Soc Thailand 18:187–194
- Thunguntla SSR, Nyavanandi VK, Nanduri S (2004) A facile route for the synthesis of limonidilactone analogues from andrographolide. Tetrahedron Lett 45:9357–9360
- Wang B, Li J, Huang WL, Zhang HB, Qian H, Zheng YT (2011) Synthesis and biological evaluation of andrographolide derivatives as potent anti-HIV agents. Chin Chem Lett 22:781–784
- Xu HW, Dai GF, Liu GZ, Wang JF, Liu HM (2007) Synthesis of andrographolide derivatives: a new family of alpha-glucosidase inhibitors. Bioorg Med Chem 15:4247–4255