

Available online at www.sciencedirect.com

EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY

European Journal of Medicinal Chemistry 43 (2008) 1160-1170

Original article

http://www.elsevier.com/locate/ejmech

Syntheses of tetrahydroisoquinoline derivatives that inhibit NO production in activated BV-2 microglial cells

Jai Woong Seo^a, Ekaruth Srisook^{a,1}, Hyo Jin Son^b, Onyou Hwang^{b,**}, Young-Nam Cha^c, Dae Yoon Chi^{a,*}

^a Department of Chemistry, Inha University, 253 Yonghyundong Namgu, Inchon 402-751, Republic of Korea ^b Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea ^c Department of Pharmacology and Toxicology, College of Medicine, Inha University, Inchon 402-751, Republic of Korea

> Received 2 April 2007; received in revised form 31 July 2007; accepted 6 September 2007 Available online 22 September 2007

Abstract

Seventeen tetrahydroisoquinoline derivatives were designed, synthesized and evaluated for inhibition of NO production in lipopolysaccharide-stimulated BV-2 microglial cells. Compounds **5a**, **9c** and **11a** potently attenuated NO production by >60%, and **5a** and **11a** inhibited BH4 production by >48% at 100 μ M. In particular, *N*-ethylcarbonyl-7-hydroxy-6-methoxy-1,2,3,4-tetrahydroisoquinoline (**11a**) reduced NO production by 64% and tetrahydrobiopterin (BH4) production by 49%. Introducing longer alkyl component at C1 or N2 position led to attenuation of the inhibitory effect. It is possible that **11a** inhibits NO production by blocking BH4-dependent dimerization of newly synthesized iNOS monomers.

© 2007 Elsevier Masson SAS. All rights reserved.

Keywords: Tetrahydroisoquinoline; Nitric oxide; Tetrahydrobiopterin; Nitric oxide synthase

1. Introduction

Nitric oxide (NO), a radical and yet a reactive gaseous metabolite, is produced from L-arginine by the enzyme nitric oxide synthase (NOS) [1]. Since NO became known as the endothelium-derived relaxing factor [2], its biological roles in cardiovascular, immune and neuronal systems have been extensively investigated and identified [3–5].

The discovery of the subtypes of NOS, namely, the endothelial (eNOS, type-3) [6], neuronal (nNOS, type-1) [7], and inducible (iNOS, type-2) forms [8], triggered studies on their physiological functions and structures [9]. It has been found that the production of NO is controlled differently: eNOS and nNOS are constitutively expressed and activated in a Ca^{2+} -dependent manner, whereas iNOS gene expression is minimal in unstimulated state and is dramatically induced in response to stimulation [9]. Overproduction of NO by iNOS has been implicated in pathogenesis of various diseases such as stroke [10], Alzheimer's disease [11], Parkinson's disease [12], atherosclerosis [13,14], and septic shock [15].

Formation of active iNOS enzyme requires a complex intracellular process: homodimerization of newly synthesized NOS monomers and binding of FMN, FAD and NADPH to the reductase domain and heme and tetrahydrobiopterin (BH4) to the oxygenase domain [16]. All these cofactors are essential for effective electron transfer and generation of NO. Among them, BH4 plays an important role in the dimerization and catalytic activity of NOS [17,18]. Thus, inhibition of dimerization even after the number of monomers has been increased during iNOS induction would prevent NO overproduction and attenuate NO-related damages.

^{*} Corresponding author. Tel.: +82 32 860 7686; fax: +82 32 867 5604.

^{**} Corresponding author. Tel.: +82 2 3010 4279; fax: +82 2 3010 4248.

E-mail addresses: oyhwang@amc.seoul.kr (O. Hwang), dychi@inha.ac.kr (D.Y. Chi).

¹ Present address: Department of Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand.

N-Acetyl-3-O-methyldopamine (NAMDA, 1) was reported to inhibit production of NO and BH4 in BV-2 microglial cells that had been stimulated with lipopolysaccharide (LPS) but the requirement of a large dose was disadvantageous for further application [19,20]. Our initial approach aimed to find a compound that is effective at lower concentrations. In this connection, we previously synthesized NAMDA analogues by using three modification methods and identified potential lead compounds [21]. Among them, we have selected Nacetyl-7-hydroxy-6-methoxy-1,2,3,4-tetrahydroisoquinoline (2) because the chemistry of tetrahydroisoquinoline is well known and C1 and/or N2 positions can easily be functionalized (Fig. 1). We have synthesized 17 derivatives of 2 and evaluated their activity against NO production in LPS-activated BV-2 cells. In addition, to elucidate whether the reduction of NO production is correlated with decreased BH4 generation, BH4 level has also been measured in some cases. Herein, we report the syntheses and structure-activity relationships (SAR) of the newly synthesized tetrahydroisoquinoline derivatives.

2. Chemistry

The synthesis of tetrahydroisoquinoline derivatives began with the well-defined Pictet—Spengler reaction between aldehyde and phenylethylamine to introduce alkyl component at C1 position [22]. Cyclization with **3** and acetaldehyde under acidic media readily afforded 1-methyl compound **4a** but this method failed to generate 1-phenyl analogue **4b** because of the solubility of benzaldehye in aqueous solvent. An alternative method using reaction under methanol to generate imine first and subsequent addition of trifluoroacetic acid (TFA) for ring formation yielded **4b** (Scheme 1). Acetylation of **4a** and **4b** with acetic anhydride produced **5a** and **5b**, respectively. Our endeavors to obtain various C1 alkyl derivatives with other aldehydes such as phenylacetaldehyde and phenylethylacetaldehyde were not fruitful because of the formation of pyridinium salt as a side reaction.

Further syntheses of tetrahydroisoquinoline derivatives were performed using the Bischler–Napieralski reaction. Compound **6**, an intermediate for branching to various alkyl amides **7a**–**g**, was obtained successively via protection of primary amine with

Tetrahydroisoquinoline derivatives

Fig. 1. NAMDA derivatives showing NO inhibitory effect.

Scheme 1. (a) Synthesis of **4a**: acetaldehyde, 1 M HCl, 100 °C, 24 h; synthesis of **4b**: (i) benzaldehyde, MgSO₄, TEA, MeOH, reflux, 3 h; (ii) TFA, 80 °C, 100 min; (b) Ac₂O, Et_3N , CH_2Cl_2 , rt, 1 h.

tert-butyloxycarbonyl anhydride, benzylation of phenol with benzyl bromide, and deprotection of *tert*-butyloxycarbonyl group. Acylations with various acyl chlorides, such as propionyl, butyryl, isobutyryl, α -phenylacetyl, 4-methylbutyryl, cyclopropanecarbonyl, and cyclobutanecarbonyl, afforded amide derivatives **7a**–g in high yields. These acylated compounds **7a**–g were treated with phosphorus oxychloride to obtain cyclized dihydroisoquinoline and subsequent reductions by sodium cyanoborohydride yielded 7-benzyloxy tetrahydroisoquinoline derivatives. Palladium catalyzed debenzylation gave various C1 alkyl substituted tetrahydroisoquinoline derivatives **8a**–g as hydrochloride salts. These compounds **9a–g**. All C1 substituted tetrahydroisoquinoline derivatives **5a**, **b**, **9a–g** were isolated as racemic mixtures.

We also synthesized N2-acyl derivatives 11a-e and their reduced forms of carbonyl groups 12a-c. 7-Hydroxy-6-methoxy-1,2,3,4-tetrahydroisoquinoline (10) was prepared according to the known procedure [21]. Various N2-acyl tetrahydroisoquinolines 11a-e were readily obtained in the presence of triethylamine with commercially available acyl chloride or anhydride in dichloromethane. The syntheses of N2-alkyl derivatives 12a-c were accomplished from amide 11a-c by reduction with lithium aluminium hydride.

3. Results and discussion

We synthesized 17 tetrahydroisoquinoline derivatives that have a variable alkyl group at C1 position and/or an acyl group at N2 position. Their effects on NO production in activated microglia were evaluated. For those compounds that led to decreased NO production, we also evaluated their cytotoxicity in order to ascertain that the apparent NO decrease was not due to cell death. Generally, the compounds did not show the increase of cytotoxicity (Table 1) and these values were similar to our previously reported results [21]. To compare the NO inhibition activity of the newly synthesized derivatives with those of the previous study, we selected tetrahydroisoquinoline **2** as Table 1

Comp.	\mathbb{R}^1	\mathbb{R}^2	Nitrite ^b	LDH
2	Н	Ac	46	107
5a	CH ₃	Ac	40	104
9a	CH ₂ CH ₃	Ac	50	_
9b	CH ₂ CH ₂ CH ₃	Ac	84	_
9c	$CH(CH_3)_2$	Ac	39	_
9e	CH ₂ CH(CH ₃) ₂	Ac	113	_
5b	Ph	Ac	51	104
9d	CH ₂ Ph	Ac	96	80
9f	Cyclopropyl	Ac	60	_
9g	Cyclobutyl	Ac	69	_
11a	Н	COCH ₂ CH ₃	36	104
11b	Н	COCH ₂ CH ₂ CH ₃	74	91
11d	Н	COCH(CH ₃) ₂	82	90
11e	Н	COCH ₂ CH(CH ₃) ₂	90	84
11c	Н	Cyclohexanecarbonyl	64	82
12a	Н	CH ₂ CH ₂ CH ₃	82	86
12b	Н	CH ₂ CH ₂ CH ₂ CH ₃	111	93
12c	Н	Cyclohexylmethyl	63	87

^a All values were obtained from triplicate experiments and averaged.

 b Amount of nitrite in the presence of each drug (100 μ M) in LPS-induced BV-2 cells, presented as percentage of LPS-activated BV-2.

^c Cytotoxicity of each drug was assessed by lactate dehydrogenase (LDH) activity released into the medium, presented as percentage of LPS-activated BV-2.

a standard compound. As shown in Table 1, this compound at 100 μ M inhibited NO production to 46% of that in the LPSalone control. Among the newly synthesized compounds, **5a**, **9c** and **11a** showed a stronger inhibitory effect than **2**.

In the series of non-aromatic C1 alkyl substituents **5a**, **9a**, **b**, **c**, and **e**, the inhibitory activity was decreased with increasing carbon length at C1 position in general. In the cases of C1 phenyl compound **5b** and benzyl compound **9d**, NO production was inhibited by 49% and 4%, respectively. Although cyclopropyl compound **9f** and cyclobutyl compound **9g** have quite a large alkyl group, their inhibitory activity was more effective compared to **9b** and **9e** that have a flexible alkyl carbon. It is possible that the rigidity of the alkyl group can facilitate binding.

The compounds with acyl derivatives on N2, such as propionyl **11a**, butyryl **11b**, isobutyryl **11d**, and isopentanoyl **11e**, reduced NO production to 36%, 74%, 82%, and 90% of control, respectively. This tendency was also very similar to that observed with the C1 alkyl substituents mentioned above. The N2-alkyl substituents **12a**, **b**, and **c** were less effective. However, cyclohexylmethyl compound **12c** and cyclohexane-carbonyl compound **11c** were quite effective (63% and 64%, respectively), and the reason for this is unknown.

It is possible that the inhibitory effect of these compounds on NO production might be due to their effect on BH4. We therefore evaluated the degrees of BH4 production in the presence of **2**, **5a**, **11a**, and **11c**, which have exhibited the highest NO inhibitory activities. As shown in Fig. 2, the amounts of BH4 produced in the LPS-activated microglia decreased in a manner dependent on the drugs' concentration. Thus, it is possible that these drugs inhibit BH4 production and therefore lead to interruption of iNOS dimerization.

In conclusion, we have designed and synthesized 17 tetrahydroisoquinoline derivatives and found a potent compound **11a** that inhibits NO production by 64% in LPS-stimulated BV-2 cells at 100 μ M. BH4 production was also reduced by 49%. It appears that a small alkyl group at C1 position or a small acyl group at N2 position yields compounds with potentially stronger inhibitory effects on BH4 and NO production. Compound **11a** might serve as a useful candidate with which inflammation-related damages can be controlled.

4. Experimental protocols

4.1. Chemistry

4.1.1. General information

Reagents were purchased from Aldrich Company and anhydrous solvents were purchased form Aldrich or Burdick & Jackson Company. Reaction progress was followed by thin layer chromatography using silica gel glass plates containing F-254 indicator (Merck). Visualization of organic compounds on TLC was monitored by UV light or phosphomolybdic acid indicator. HPLC solvents were purchased from Burdick & Jackson Company Analysis of mass trace with standard compounds was performed with Gilson HPLC system. ¹H and ¹³C NMR spectra were btained on a Varian Gemini-200 or -400 and chemical shifts are reported in δ unit (ppm) relative to tetramethylsilane. Coupling constants are reported in hertz. Melting points were checked using OptiMelt apparatus (Stanford research systems) and are uncorrected. Low-resolution electron impact (EI, 70 eV) spectra were obtained on a Varian 1200L single quadruple GC-MS system with CP-3800GC

Fig. 2. Amount of BH4 produced in LPS-activated BV-2 cells in the presence of various concentrations of drugs. Data points: $2 (50 \ \mu M - 79\%, 100 \ \mu M - 55\%)$, $5a (10 \ \mu M - 99\%, 30 \ \mu M - 59\%, 60 \ \mu M - 59\%, 100 \ \mu M - 52\%)$, $11a (10 \ \mu M - 86\%, 60 \ \mu M - 72\%, 100 \ \mu M - 51\%)$, $11c (30 \ \mu M - 95\%, 60 \ \mu M - 71\%, 100 \ \mu M - 63\%)$. The data are presented as percentage of LPS-alone control.

and ESI low-resolution mass spectra were obtained on a Varian 1200L quadruple LC/MS system. Elemental analyses were performed on Flash EA1112 (Thermo Electron Corporation) by the Center for Collaborative Instruments at Inha University.

4.1.2. Procedures for the preparation of 5a and 5b (Scheme 1)

4.1.2.1. 2-Acetyl-7-hydroxy-6-methoxy-1-methyl-1,2,3,4-tetrahydroisoquinoline (5a). To a solution of 3 (1.96 mmol, 400 mg) in 1 M HCl solution (10 mL) under pressure tube, acetaldehvde (15.7 mmol, 692 mg) was added. After the tube was surely capped, the reaction was heated at 100 °C for 24 h. The solution was neutralized by saturated NaHCO₃ solution and evaporated under vacuum. The powder was dissolved with methanol and precipitates were removed. After the solution was concentrated, flash column chromatography (1% MeOH/ EtOAc) was performed. Compound 4a was obtained as a hydrochloride salt from MeOH and 1.0 M hydrogen chloride in diethyl ether (off-white powder, 250 mg, 55% yield): m.p. 175–177 °C dec. (lit. 174–175 °C [23]); ¹H NMR (400 MHz, DMSO-d₆) δ 9.93 (br s, 1H), 9.40 (br s, 1H), 9.06 (s, 1H), 6.72 (s, 1H), 6.67 (s, 1H), 4.32–4.30 (m, 1H), 3.47 (s, 3H), 3.28-3.36 (m, 1H), 3.21-3.22 (m, 1H), 2.29-2.00 (m, 1H), 1.52 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, DMSO-d₆) & 147.1, 145.4, 126.0, 122.1, 112.7, 111.9, 55.6, 49.7, 38.6, 24.6, 19.1; MS (CI) 194 (M^+ + 1, 100), 178, 164. Registry: 98321-33-6. Compound 4a (0.44 mmol, 100 mg) was poured in CH₂Cl₂ (5 mL) and then Et₃N (1.0 mmol) and acetic anhydride (0.44 mmol, 45 mg) were slowly added at room temperature. After 1 h, solvent was evaporated under vacuum. The residual solution was neutralized by saturated NaHCO₃ solution and extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄ and solvent was evaporated under reduced pressure. Compound 5a (91 mg, 83%) was obtained as a white solid by crystallization in CH₂Cl₂ and hexane: m.p. $175-177 \,^{\circ}C$; ¹H NMR (400 MHz, CDCl₃) δ 6.96 (s, one conformer of C5–H), 6.66 (s, one conformer of C5–H), 6.59 (s, one conformer of C8-H), 6.57 (s, one conformer of C8-H), 5.83 (s, one conformer of O-H), 5.78 (s, one conformer of O-H), 5.53 (q, J = 6.6 Hz, one conformer of C1-H), 4.83 (q, J = 6.6 Hz, one conformer of C1-H), 4.70-4.65 (m, one)conformer of C3-H), 3.82-3.76 (m, one conformer of C3–H), 3.52–3.44 (m, one conformer of C3–H), 3.02–2.95 (m, one conformer of C3-H), 2.90-2.79 (m, 1H), 2.75-2.70 (m, one conformer of C4-H), 2.69-2.60 (m, one conformer of C4-H), 2.18 (s, one conformer of C1-CH₃), 2.15 (s, one conformer of C1–CH₃), 1.49 (d, J = 6.4 Hz, one conformer of COCH₃), 1.40 (d, J = 6.8 Hz, one conformer of COCH₃); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 168.7, 145.5, 145.3, 144.3, 144.1, 131.3, 130.0, 125.6, 124.4, 112.8, 112.3, 110.8, 110.4, 55.9, 52.3, 47.9, 40.4, 34.8, 29.0, 28.2, 22.5, 21.9, 21.5, 21.4; MS (EI) 235 (M⁺, 100), 220. HRMS (EI) *m/z* calcd for C₁₃H₁₇NO₃ [M]⁺ 235.1208; found 235.1209.

4.1.2.2. 2-Acetyl-7-hydroxy-6-methoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline (5b). A mixture of **3** (1.0 mmol, 204 mg), MgSO₄ (2.49 mmol, 300 mg), benzaldehyde (1.0 mmol, 106 mg), and Et₃N (2.0 mmol, 202 mg) in anhydrous MeOH was refluxed for 3 h. The mixture was filtered through celite and the solution was evaporated under reduced pressure. The residual solid was refluxed in trifluoroacetic acid (TFA) for 1 h and then TFA was evaporated. After neutralization by NaHCO₃ solution, organics were extracted by CH₂Cl₂. The organic layer was dried over Na₂SO₄ and flash column chromatography (5:95, MeOH:CH₂Cl₂) gave **4b** (188 mg, 74%) as a white foam: m.p. 176-178 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.57 (br s, 1H),7.22–7.32 (m, 5H), 6.63 (s, 1H), 6.04 (s, 1H), 3.72 (s, 3H), 3.01-3.10 (m, 1H), 2.76-2.89 (m, 2H), 2.55–2.65 (m, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 146.0, 145.6, 144.1, 130.7, 128.9, 128.0, 126.8, 125.7, 114.4, 112.2, 60.8, 55.5, 42.0, 28.8; MS (CI) 284, 256 (M⁺ + 1, 100), 178. Registry: 72105-97-6. Compound 4b (57 mg, 0.223 mmol) dissolved in chloroform (5 mL) was reacted with acetic anhydride (23 mg, 0.223 mmol) at room temperature for 1 h. After neutralization by NaHCO₃ solution, organics were extracted by CH₂Cl₂. Compound **5b** (59 mg, 89%) was recrystallized from CH₂Cl₂ and hexane as a white solid: m.p. 168–169 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.18 (m, 5H), 6.86–6.58 (m, several conformer peaks of C5-H and C8-H, 3H), 5.84-5.30 (m, several conformer peaks of O-H, 1H), 4.33-4.27 (m, one conformer of C1-H), 3.89 (s, 3H) 3.72-3.66 (m, one conformer of C1-H), 3.46-3.38 (m, one conformer of C3-H), 3.27-3.21 (m, one conformer of C3-H), 2.96-2.82 (m, one conformer of C4-H), 2.76-2.60 (m, one conformer of C4-H), 2.74 (s, one conformer of COCH₃), 2.15 (s, one conformer of COCH₃); ^{13}C NMR (100 MHz, CDCl₃) δ 169.7, 168.9, 145.8, 144.2, 143.9, 142.4, 141.4, 128.6, 129.5, 128.1, 127.8, 127.7, 127.5, 127.2, 126.8, 125.7, 114.5, 113.8, 110.8, 110.4, 60.2, 55.9, 54.4, 40.4, 37.6, 28.6, 27.4, 22.1, 21.7; MS (EI) 297 (M⁺), 254, 239, 220, 178 (100), 163. HRMS (EI) *m/z* calcd for C₁₈H₁₉NO₃ [M]⁺ 297.1365; found 297.1367.

4.1.3. Procedures for the preparation of 9a-g

4.1.3.1. N-[2-(4-Hydroxy-3-O-methylphenyl)ethyl]amine hydrochloride (6). To a solution of 3 (1.3 g, 6.4 mmol) in chloroform (20 mL) was added tert-butyloxycarbonyl anhydride (1.67 g, 7.6 mmol) and Et₃N (1.93 g, 19.5 mmol) (Scheme 2). After 24 h, the reaction was quenched by NH₄Cl solution. Organics were extracted by CH₂Cl₂ and washed by additional H_2O (100 mL \times 2). Column chromatography (1:1, EtOAc:hexane) gave a white solid (1.32 g, 59%): m.p. 117-119 °C (lit. 115 °C [26]). Registry: 23699-77-6. It was dissolved in acetone (20 mL). After addition of K₂CO₃ and benzylbromide, the reaction mixture was refluxed for 12 h. Solvent was evaporated under reduced pressure and water was poured. Organics were extracted by ethyl acetate and dried over sodium sulfate. Column chromatography (3:7, EtOAc:hexane) gave white solid (1.57 g, 95%): m.p. 74–75 °C (lit. 68–70 °C [26]). Registry: 23428-81-1. The white solid (16.8 mmol, 6.0 g) in CH_2Cl_2 (20 mL) was treated with trifluoroacetic acid (20 mL) slowly under N₂ at 0 °C. The reaction was stirred for 40 min. After the reaction, the reaction mixture was slowly poured to

Scheme 2. (a) (Boc)₂O, Et₃N, CHCl₃, rt, 24 h; (b) benzyl bromide, K₂CO₃, acetone, reflux, 12 h; (c) TFA, CH₂Cl₂, 0 °C, 40 min; (d) acyl chloride, TEA, CH₂Cl₂, rt, 30 min–1 h; (e) POCl₃, CH₃CN, reflux, 2–5 h; (f) NaBH₄, 0 °C–rt, 24 h; (g) Pd/C, H₂, HCl, MeOH, rt, 12 h; (h) Ac₂O, CH₂Cl₂, 0 °C–rt, 2 h.

saturated sodium bicarbonate solution containing ice. Excess of diethyl ether was poured and extracted. Solvent was evaporated and the mixture was dissolved in chloroform, and washed with saturated NaHCO₃. Solvent was evaporated. The mixture was dissolved in diethyl ether. The mixture was solidified as HCl salt by pouring 1 M HCl ether (20 mL) and stirring. Filtration gave **6** as a white solid (1.32 g, 64%): m.p. 170–172 °C (lit. 173–174 °C [27]); ¹H NMR (200 MHz, CDCl₃) δ 8.24 (br s, 2H), 7.28–7.45 (m, 5H), 6.96 (d, *J* = 8.0 Hz, 1H), 6.90 (d, *J* = 1.8 Hz, 1H), 6.73 (dd, *J* = 8.0, 1.8 Hz, 1H), 5.04 (s, 1H), 3.77 (s, 3H), 2.96–3.03 (m, 2H), 2.80–2.88 (m, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 149.3, 146.6, 137.2, 130.3, 128.2, 127.6, 127.5, 120.5, 114.1, 113.0, 70.1, 55.6, 32.4; MS (CI) 258 (M⁺), 241 (100), 228, 91. Registry: 1860-57-7.

4.1.3.2. N-[2-(4-Benzyloxy-3-methoxyphenyl)ethyl]propionamide (7a). To a solution of 6 (3.5 mmol, 0.9 g) in CH_2Cl_2 were added Et₃N (11 mmol, 1.1 g) and propionyl chloride (4.6 mmol, 0.42 g) dropwise at 0 °C. Ice bath was removed and stirred for 30-60 min. After removal of solvent by evaporation, H₂O was added and then extracted with ethyl acetate. The organic layer was washed with brine and water, and dried over Na₂SO₄. Solvent was evaporated and the product was purified by flash column chromatography (3:2:5, EtOAc:CH₂Cl₂:hexane). Compound 7a (0.98 g, 90%) was obtained as a white foam: m.p. 88-89 °C; ¹H NMR (200 MHz, CDCl₃) δ 7.26-7.46 (m, 5H), 6.81 (d, J = 8.0 Hz, 1H), 6.73 (d, J = 2.2 Hz, 1H), 6.64 (dd, J = 8.2, 1.9 Hz, 1H), 5.65 (br s, 1H), 5.12 (s, 2H), 3.86 (s, 3H), 3.46 (q, J = 6.6 Hz, 2H), 2.73 (t, J = 7.0 Hz, 2H), 2.14 (q, J = 7.5 Hz, 2H), 1.11 (t, J = 7.7 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 173.7, 149.6, 146.7, 137.1, 132.1, 128.4, 127.7, 127.2, 120.5, 114.2, 112.4, 71.0, 55.8, 40.5, 35.2, 29.6, 9.8; MS (EI) 313 (M⁺), 240, 149, 137,

91 (100), 65, 57, 30. HRMS (EI) m/z calcd for $C_{19}H_{23}NO_3$ [M]⁺ 313.1678; found 313.1675.

4.1.3.3. *N*-[2-(4-Benzyloxy-3-methoxyphenyl)ethyl]butyramide (**7b**). Same procedure as for **7a** was performed with **6** (3.5 mmol, 0.9 g), butyryl chloride (4.2 mmol, 0.45 g), and Et₃N (10.5 mmol, 1.06 g) to obtain **7b** (1.1 g, 94%) as a white foam: m.p. 100–101 °C; ¹H NMR (200 MHz, CDCl₃) δ 7.46–7.26 (m, 5H), 6.81 (d, *J* = 8.0 Hz, 1H), 6.73 (d, *J* = 1.8 Hz, 1H), 6.64 (dd, *J* = 8.0, 1.8 Hz, 1H), 5.56 (s, 1H), 5.12 (s, 2H), 3.86 (s, 3H), 3.47 (q, *J* = 6.6 Hz, 2H), 2.74 (t, *J* = 7.0 Hz, 2H), 2.09 (t, *J* = 7.6 Hz, 2H), 1.61 (sext, *J* = 7.4 Hz, 2H), 0.91 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 172.9, 149.7, 146.7, 137.2, 132.0, 128.4, 127.7, 127.2, 120.5, 114.2, 112.4, 71.1, 55.9, 40.5, 38.6, 35.3, 19.1, 13.7; MS (EI) 327 (M⁺), 240, 149, 137, 91 (100), 43. HRMS (EI) *m*/z calcd for C₂₀H₂₅NO₃ [M]⁺ 327.1834; found 327.1831.

4.1.3.4. N-[2-(4-Benzyloxy-3-methoxyphenyl)ethyl]isobutyramide (7c). Same procedure as for **7a** was performed with **6** (3.50 mmol, 0.9 g), isobutyryl chloride (4.2 mmol, 0.45 g), and Et₃N (11 mmol, 1.1 g) to obtain **7c** (1.1 g, 96%) as a white solid: m.p. 110–112 °C; ¹H NMR (200 MHz, CDCl₃) δ 7.46– 7.26 (m, 5H), 6.82 (d, J = 8.2 Hz, 1H), 6.73 (d, J = 1.8 Hz, 1H), 6.64 (dd, J = 8.0, 1.4 Hz, 1H), 5.56 (br s, 1H), 5.13 (s, 2H), 3.87 (s, 3H), 3.47 (q, J = 6.6 Hz, 2H), 2.74 (t, J = 6.9 Hz, 2H), 2.28 (quin, J = 7.1 Hz, 1H), 1.11 (d, J = 7.0 Hz, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 176.8, 149.7, 146.7, 137.1, 132.1, 128.4, 127.7, 127.2, 120.6, 114.2, 112.4, 71.1, 55.9, 40.4, 35.5, 35.2, 19.5; MS (EI) 327 (M⁺), 240, 149, 137, 91 (100), 43. HRMS (EI) *m*/z calcd for C₂₀H₂₅NO₃ [M]⁺ 327.1834; found 327.1836.

4.1.3.5. N-[2-(4-Benzyloxy-3-methoxyphenyl)ethyl]-2-phenylacetamide (7d). Same procedure as for 7a was performed with **6** (3.4 mmol, 1.0 g), Et₃N (10 mmol, 1.0 g) and phenylacetyl chloride (3.8 mmol, 0.52 g) to obtain 7d (0.8 g, 63%) as a white solid: ¹H NMR (200 MHz, CDCl₃) δ 7.71–7.47 (m, 10H), 6.65 (d, J = 8.2 Hz, 1H), 6.62 (d, J = 1.8 Hz, 1H), 6.44 (dd, J = 8.2, 2.2 Hz, 1H), 5.39 (br s, 1H), 5.12 (s, 2H), 3.82 (s, 3H), 3.51 (s, 2H), 3.42 (q, J = 6.4 Hz, 2H), 2.65 (t, J = 6.7 Hz, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 170.8, 149.6, 146.7, 137.2, 134.7, 131.7, 129.4, 128.9, 128.5, 127.8, 127.2, 127.1, 120.5, 114.1, 112.2, 71.0, 55.9, 43.8, 40.6, 35.0; MS (EI) 375 (M⁺), 240, 149, 137, 91 (100), 65. Registry: 4876-01-1.

4.1.3.6. N-[2-(4-Benzyloxy-3-methoxyphenyl)ethyl]-3-methylbutyramide (7e). Same procedure as for 7a was performed with 6 (3.5 mmol, 0.9 g), isovaleryl chloride (4.2 mmol, 0.51 g), and Et₃N (11 mmol, 1.1 g) to obtain 7e (1.1 g, 93%) as a white solid: m.p. 114–115 °C (lit. 114–115 °C [28]); ¹H NMR (200 MHz, CDCl₃) δ 7.46–7.25 (m, 5H), 6.82 (d, J = 8.0 Hz, 1H), 6.73 (d, J = 1.8 Hz, 1H), 6.63 (dd, J = 8.2, 2.0 Hz, 1H), 5.51 (br s, 1H), 5.13 (s, 2H), 3.87 (s, 3H), 3.49 (q, J = 6.7 Hz, 2H), 2.74 (t, J = 6.9 Hz, 2H), 2.15–1.95 (m, 3H), 0.90 (d, J = 6.6 Hz, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 172.4, 149.7, 146.7, 137.1, 132.0, 128.5, 127.7, 127.2, 120.5, 114.2, 112.4, 71.1, 55.9, 46.1, 40.4, 35.3, 22.4; MS (EI) 341 (M⁺), 240, 149, 137, 91 (100), 65, 57, 30. Registry: 95290-23-6.

4.1.3.7. N-[2-(4-Benzyloxy-3-methoxyphenyl)ethyl]-2-cyclopropylacetamide (7f). Same procedure as for 7a was performed with 6 (3.9 mmol, 1.0 g), cyclopropanecarbonyl chloride (5.5 mmol, 0.59 g), and Et₃N (12 mmol, 1.2 g) to obtain **7f** (1.12 g, 88%)as a white solid: m.p. 115–116 °C; ¹H NMR (200 MHz, CDCl₃) δ 7.45-7.26 (m, 5H), 6.82 (d, J = 8.0 Hz, 1H), 6.74 (d, J = 1.8 Hz, 1H), 6.58 (dd, J = 8.0, 1.8 Hz, 1H), 5.77 (br s, 1H), 5.13 (s, 2H), 3.87 (s, 3H), 3.48 (q, J = 6.6 Hz, 2H), 2.74 (t, J = 7.0 Hz, 2H), 1.85–1.19 (m, 1H), 0.95 (quin, J = 3.8 Hz, 2H), 0.74–0.64 (m, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 173.4, 149.6, 146.7, 137.2, 132.1, 128.4, 127.7, 127.2, 120.5, 114.2, 112.4, 71.1, 55.9, 40.8, 35.3, 14.6, 7.0; MS (EI) 325 (M⁺), 240, 149, 137, 91 (100), 69, 41. HRMS (EI) m/z calcd for $C_{20}H_{23}NO_3$ [M]⁺ 325.1678; found 325.1678.

4.1.3.8. N-[2-(4-Benzyloxy-3-methoxyphenyl)ethyl]-2-cyclobutylacetamide (7g). Same procedure as for 7a was performed with 6 (3.5 mmol, 0.9 g), cyclobutanecarbonyl chloride (4.6 mmol, 0.54 g), and Et₃N (10.5 mmol, 1.06 g) to obtain 7g (0.74 g, 79%) as a white solid: m.p. 104–105 °C; ¹H NMR (200 MHz, CDCl₃) δ 7.46–7.25 (m, 5H), 6.81 (d, J = 8.0 Hz, 1H), 6.73 (d, J = 1.8 Hz, 1H), 6.64 (dd, J = 8.2, 2.2 Hz, 1H), 5.49 (br s, 1H), 5.13 (s, 2H), 3.87 (s, 3H), 3.47 (q, J = 6.6 Hz, 2H), 2.92 (quin, J = 8.5 Hz, 1H), 2.73 (t, J = 7.0 Hz, 2H), 2.37–1.98 (m, 4H), 1.94–1.78 (m, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 174.9, 149.7, 146.7, 137.2, 132.1, 128.4, 127.7, 127.2, 120.6, 114.2, 112.4, 71.1, 55.9, 40.4, 39.9, 35.2, 25.3, 18.1; MS (EI) 339 (M⁺), 240, 149, 137, 91 (100), 55. HRMS (EI) *m*/z calcd for C₂₂H₂₇NO₃ [M]⁺ 339.1834; found 339.1838.

4.1.3.9. 1-Ethyl-7-hvdroxy-6-methoxy-1.2.3.4-tetrahydroisoguinoline hydrochloride (8a). POCl₃ (9.0 mmol, 1.38 g) was added to a solution of 7a (3.0 mmol, 0.9 g) in anhydrous acetonitrile under N₂. The reaction mixture was refluxed for 2 h and then cooled to room temperature. Solvent was evaporated and vacuumed. The crude mixture was dissolved in anhydrous methanol and NaBH₄ (15 mmol, 0.59 mg) was slowly added under ice bath under nitrogen atmosphere. Ice bath was removed and the reaction was stirred for 24 h. After reaction, the mixture was quenched by 0.1 M NaOH solution and filtered with silica gel and Na₂SO₄ fitted drying tube. Saturated sodium bicarbonate solution was poured and then extracted with CH₂Cl₂ two times. The organic layer was dried over Na₂SO₄ and evaporated in vacuo. The crude, a slightly yellow solid, was dissolved in methanol and 10% palladium charcoal (0.1 g) was added. Hydrogenation was performed with H₂ balloon with vigorous stirring for 12 h. After reaction, the mixture was filtered with celite, and solvent was evaporated. Flash column chromatography (3-5% MeOH/CH₂Cl₂) was performed and the product was crystallized as hydrochloride salt of 8a (128 mg, 18%) from 1.0 M hydrogen chloride in diethyl ether as a white powder: m.p. 150-152 °C (lit. 218-220 °C [29]); ¹H NMR (400 MHz, DMSO- d_6) δ 9.69 (br s, 1H), 9.07 (br s, 1H), 9.02 (s, 1H), 6.73 (s, 1H), 6.66 (s, 1H), 4.23 (br s, 1H), 3.74 (s, 3H), 3.16 (br s, 1H), 3.01–2.93 (m, 1H), 2.86–2.80 (m, 1H), 1.97–1.87 (m, 2H), 1.01 (t, J = 3.7 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 147.1, 145.2, 124.5, 122.5, 113.0, 112.0, 55.6, 55.0, 54.6, 26.2, 24.5, 9.8; LC MS 208.2 (M⁺ + 1, 100). Registry: 19886-92-1.

4.1.3.10. 7-Hydroxy-6-methoxy-1-propyl-1,2,3,4-tetrahydroisoquinoline hydrochloride (**8b**). Same procedure as for **8a** was followed with **7b** (3.0 mmol, 1.0 g), POCl₃ (9.0 mmol, 1.38 g), NaBH₄ (24 mmol, 0.91 g), and 10% palladium charcoal (0.1 g) to obtain **8b** (0.59 g, 77%) as a white solid: m.p. 209–211 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 9.80–9.20 (br s, 1H), 9.04 (br s, 1H), 6.72 (s, 1H), 6.66 (s, 1H), 4.26 (t, *J* = 3.2 Hz, 1H), 3.74 (s, 3H), 3.36–3.30 (m, 1H), 3.00–2.93 (m, 1H), 2.85–2.78 (m, 1H), 1.88–1.81 (m, 2H), 1.52–1.42 (m, 2H), 0.92 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 147.1, 145.2, 124.9, 122.5, 123.0, 112.0, 55.6, 53.5, 35.6, 24.5, 18.2, 13.7; LC MS (ESI) 222.2 (M⁺ + 1, 100). HRMS (FAB) *m/z* calcd for C₁₃H₂₀NO₂ [MH]⁺ 222.1494; found 222.1495.

4.1.3.11. 7-Hydroxy-1-isopropyl-6-methoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (8c). Same procedure as for 8a was followed with 7c (3.0 mmol, 0.98 g), POCl₃ (9.0 mmol, 1.38 g), NaBH₄ (24 mmol, 0.91 g), 10% palladium charcoal (0.1 g) to obtain 8c (536 mg, 70%) as a white solid: m.p. 194–196 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 9.81 (br s, 1H), 9.04 (br s, 1H), 8.66 (br s, 1H), 6.69 (s, 1H), 4.26 (br t, J = 3.4 Hz, 1H), 3.75 (s, 3H), 3.37 (br s, 1H), 3.10–3.08 (m, 2H), 2.78–2.73 (m, 1H), 2.37–2.29 (m, 1H), 1.08 (d, J = 7.2 Hz, 3H), 0.84 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 146.9, 145.3, 123.7, 123.4, 113.0, 111.9, 58.9, 55.5, 43.3, 30.8, 24.6, 19.2, 16.2; LC MS (ESI) 222.2 (M⁺ + 1, 100). HRMS (FAB) *m*/*z* calcd for C₁₃H₂₀NO₂ [MH]⁺ 222.1494; found 222.1489.

4.1.3.12. 1-Benzyl-7-hydroxy-6-methoxy-1,2,3,4-tetrahydroisoquinoline (8d). Same procedure as for 8a was followed with 7d (1.6 mmol, 0.6 g), POCl₃ (13 mmol, 2.0 g), NaBH₄ (15 mmol, 0.59 mg), and 10% palladium charcoal (0.1 g) to obtain 8d (0.1 g, 74%) as a white solid: m.p. 153–156 °C (lit. 115–119 °C w/HCl [30]); ¹H NMR (400 MHz, CDCl₃) δ 7.22–7.36 (m, 5H), 6.62 (s, 1H), 6.57 (s, 1H), 4.04–4.10 (m, 1H), 3.82 (s, 3H), 3.13–3.22 (m, 2H), 2.70–2.90 (m, 3H), 2.62–2.70 (m, 1H); ¹³C NMR (400 MHz, CDCl₃) δ 145.1, 143.6, 139.1, 131.2, 129.3, 128.6, 126.6, 126.4, 112.0, 111.1, 56.8, 55.9, 42.4, 40.9, 29.5; MS (CI) 270 (M⁺ + 1), 178 (100). Registry: 57256-36-7.

4.1.3.13. 7-Hydroxy-1-isobutyl-6-methoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (8e). Same procedure as for 8a was followed with 7e (3.1 mmol, 1.1 g), POCl₃ (9.4 mmol, 1.44 g), NaBH₄ (25 mmol, 0.95 mg), and 10% palladium charcoal (0.1 g) to obtain 8e (567 mg, 67%) as a white solid: m.p. 231–233 °C dec.; ¹H NMR (400 MHz, DMSO- d_6) δ 9.75 (br s, 1H), 9.36 (br s, 1H), 9.06 (s, 1H), 6.72 (s, 1H), 6.64 (s, 1H), 4.27 (br d, J = 3.6 Hz, 1H), 3.74 (s, 3H), 3.37–3.11 (m, 1H), 3.20–3.08 (m, 1H), 3.02–2.90 (m, 1H), 2.90–2.78 (m, 1H), 2.00–1.89 (m, 1H), 1.88–1.77 (m, 1H), 1.65–1.55 (m, 1H), 0.98 (d, J = 6.4 Hz, 3H), 0.95 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 147.0, 145.2, 125.4, 122.5, 113.0, 112.0, 55.6, 51.8, 43.3, 38.7, 24.4, 23.8, 23.0. 21.6; LC MS (ESI) 236.2 (M⁺ + 1, 100). HRMS (FAB) *m*/*z* calcd for C₁₄H₂₂NO₂ [MH]⁺ 236.1651; found 236.1650.

4.1.3.14. 1-Cyclopropyl-7-hydroxy-6-methoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (**8***f*). Same procedure as for **8a** was followed with **7f** (3.1 mmol, 1.0 g), POCl₃ (9.1 mmol, 1.40 g), NaBH₄ (25 mmol, 0.93 g), and 10% palladium charcoal (0.1 g) to obtain **8f** (458 mg, 58%) as a white solid: m.p. 210–213 °C dec.; ¹H NMR (400 MHz, DMSO d_6) δ 9.64 (br s, 2H), 9.09 (s, 1H), 6.97 (s, 1H), 6.73 (s, 1H), 3.74 (s, 3H), 3.55 (d, J = 9.6 Hz, 1H), 3.41–3.36 (m, 1H), 3.14–2.97 (m, 2H), 2.86–2.77 (m, 1H), 1.18–1.09 (m, 1H), 0.68–0.81 (m, 1H), 0.81–0.72 (m, 1H), 0.72–0.64 (m, 1H), 0.60–0.52 (m, 1H); ¹³C NMR (100 MHz, DMSO d_6) δ 147.3, 145.2, 125.1, 122.4, 113.1, 111.9, 58.9, 55.6, 39.8, 24.5, 14.6, 5.8, 2.8; LC MS (ESI) 220.2 (M⁺ + 1, 100), 203.2. HRMS (FAB) *m/z* calcd for C₁₃H₁₈NO₂ [MH]⁺ 220.1338; found 220.1336.

4.1.3.15. 1-Cyclobutyl-7-hydroxy-6-methoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (8g). Same procedure as for 8a was followed with 7g (3.0 mmol, 1.0 g), POCl₃ (8.8 mmol, 1.36 g), NaBH₄ (24 mmol, 0.89 g), and 10% palladium charcoal (0.1 g) to obtain 8g (645 mg, 81%) as a white solid: m.p. 269-271 °C dec.; ¹H NMR (400 MHz, DMSO d_6) δ 9.90–9.00 (br s, 2H), 9.07 (s, 1H), 6.73 (s, 1H), 6.62 (s, 1H), 4.20 (d, J = 9.2 Hz, one conformer of C1–H), 4.14 (br d, J = 4.8 Hz, one conformer of C1–H), 3.73 (s, 3H), 3.31-3.25 (m, 1H), 3.16 (d, J = 4.0 Hz, 1H), 3.13-3.07 (m, 1H), 2.98-2.91 (m, 1H), 2.85-2.76 (m, 1H), 2.78-2.67 (m, 1H), 2.17-2.02 (m, 3H), 2.02-1.92 (m, 1H), 1.89-1.70 (m, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 147.1, 145.1, 124.1, 122.4, 112.9, 112.1, 57.5, 55.5, 48.6, 38.3, 26.8, 25.2, 24.5, 17.6; LC MS (ESI) 234.2 (M⁺ + 1, 100). HRMS (FAB) m/z calcd for C₁₄H₂₀NO₂ [MH]⁺ 234.1494; found 234.1497.

4.1.3.16. 2-Acetyl-1-ethyl-7-hydroxy-6-methoxy-1,2,3,4-tetrahydroisoquinoline (**9a**). To a solution of **8a** (0.36 mmol, 85 mg) in CH₂Cl₂ (10 mL) were added acetic anhydride (0.35 mmol, 36 mg) and Et₃N (1.8 mmol, 0.18 g) at room temperature. After stirring for 2 h, solvent was evaporated at reduced pressure. Flash column chromatography (1:1, EtOAc:hexane) was performed and recrystallization from CH₂Cl₂ and hexane gave **9a** (51 mg, 58%) as a white solid: m.p. 131–132 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.70 (s, one conformer of C6–H or C8–H), 6.65 (s, one conformer of C6–H or C8–H), 6.58 (s, one conformer of C6–H or C8–H), 6.56 (s, one conformer of C6–H or C8–H), 5.46– 5.40 (dd, J = 8.8, 6.0 Hz, one conformer of C1–H), 4.66– 4.59 (m, one conformer of C3–H), 4.59–4.53 (t, J = 7.2 Hz, one conformer of C1–H), 3.859 (s, one conformer of OCH₃), 3.850 (s, one conformer of OCH₃), 3.78–3.73 (m, one conformer of C3–H), 3.55–3.42 (m, one conformer of C3–H), 3.06–2.97 (m, one conformer of C3–H), 2.94–2.79 (m, one conformer of C4–H, 1H), 2.79–2.70 (m, one conformer of C4–H), 2.65–2.57 (m, one conformer of C4–H), 2.17 (s, one conformer of $-NCOCH_3$), 2.16 (s, one conformer of $-NCOCH_3$), 1.88–1.70 (m, 2H), 0.96 (td, J = 29.2, 7.2 Hz, 3H). Anal. calculated (C₁₄H₁₉NO₃) C, 67.45; H, 7.68; N, 5.62; found C, 67.32; H, 7.84; N, 5.67.

4.1.3.17. 2-Acetyl-7-hydroxy-6-methoxy-1-propyl-1,2,3,4-tetrahvdroisoquinoline (9b). Same procedure as for 9a was followed with **8b** (0.78 mmol, 0.20 g), acetic anhydride (0.78 mmol, 79 mg) and Et_3N (2.3 mmol, 0.24 g) and it gave **9b** (92 mg, 45%) as a white solid: m.p. 121–122 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.69 (s, one conformer of C6–H or C8-H), 6.64 (s, one conformer of C6-H or C8-H), 6.58 (s, one conformer of C6–H or C8–H), 6.56 (s, one conformer of C6–H or C8–H), 5.54–5.48 (m, one conformer of C1–H), 4.70-4.56 (m, one conformer of C1-H and C3-H), 3.854 (s, one conformer of OCH_3), 3.845 (s, one conformer of OCH_3), 3.79-3.71 (m, one conformer of C3-H), 3.57-3.47 (m, one conformer of C3-H), 3.10-3.00 (m, one conformer of C3-H), 2.95-2.58 (m, one conformer of C4-H, 2H), 2.164 (s, one conformer of -NCOCH₃), 2.157 (s, one conformer of -NCOCH₃), 1.88-1.60 (m, 2H), 1.50-1.24 (m, 2H), 1.12-0.84 (m, 3H); 13 C NMR (100 MHz, CDCl₃) δ 169.4, 145.5, 144.1, 143.8, 130.8, 129.9, 125.5, 124.4, 113.3, 112.5, 110.9, 110.4, 57.1, 55.9, 51.9, 40.7, 29.4, 38.7, 35.4, 28.7, 27.6, 21.8, 21.7, 19.9, 19.6, 14.0. Anal. calculated (C₁₅H₂₁NO₃) C, 68.42; H, 8.04; N, 5.32; found C, 68.48; H, 8.04; N, 5.30.

2-Acetyl-7-hvdroxy-1-isopropyl-6-methoxy-1,2,3,4-4.1.3.18. tetrahydroisoquinoline (9c). Same procedure as for 9a was followed with 8c (0.78 mmol, 0.20 g), acetic anhydride (0.78 mmol, 79 mg) and $\text{Et}_3 \text{N}$ (3.9 mmol, 0.39 g) and it gave **9c** (141 mg, 67%) as a white solid: m.p. $136-137 \,^{\circ}\text{C}$; ¹H NMR (400 MHz, CDCl₃) δ 6.73 (s, one conformer of C6–H or C8-H), 6.67 (s, one conformer of C6-H or C8-H), 6.61 (s, one conformer of C6-H or C8-H), 6.60 (s, one conformer of C6–H or C8–H), 5.18 (d, J = 8.8 Hz, one conformer of C1-H), 4.54-4.44 (m, one conformer of C3-H), 4.16 (d, J = 8.2 Hz, one conformer of C1–H), 3.857 (s, one conformer of OCH₃), 3.850 (s, one conformer of OCH₃), 3.74-3.62 (m, one conformer of C3-H), 3.26-3.16 (m, one conformer of C3-H), 2.95-2.72 (m, one conformer of C4-H, 2H), 2.15 (s, 3H), 2.08–1.90 (m, 1H), 1.14–0.92 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 169.8, 145.7, 145.5, 143.5, 143.1, 130.0, 128.9, 125.6, 124.9, 114.6, 113.8, 111.0, 110.4, 63.6, 57.7, 55.9, 42.0, 36.5, 33.7, 33.4, 28.0, 26.8, 22.0, 21.98, 20.5, 20.2, 20.0, 19.8. Anal. calculated (C₁₅H₂₁NO₃) C, 68.42; H, 8.04; N, 5.32; found C, 68.17; H, 8.28; N, 5.35.

4.1.3.19. 2-Acetyl-1-benzyl-7-hydroxy-6-methoxy-1,2,3,4-tetrahydroisoquinoline (9d). Same procedure as for 9a was followed with 8d (0.26 mmol, 69 mg) and acetic anhydride

1167

(0.28 mmol, 29 mg) and it gave 9d (75 mg, 94%) as a white foam: m.p. 66-70 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.40-6.95 (m. 5H), 6.72 (s. one conformer of C6-H or C8-H). 6.58 (s, one conformer of C6-H or C8-H), 6.50 (s, one conformer of C6-H or C8-H), 6.48 (s, one conformer of C6-H or C8-H), 4.62-4.40 (m, one conformer of C1-H), 3.85 (s, one conformer of OCH_3), 3.82 (s, one conformer of OCH_3), 3.15-2.95 (m, one conformer of C3-H and one conformer of C4-H), 2.90-2.80 (m, one conformer of benzyl-H), 2.55-2.52 (m, one conformer of benzyl-H), 2.55-2.45 (m, one conformer of benzyl-H), 2.06 (s, one conformer of -NCOCH₃), 1.40 (s, one conformer of -NCOCH₃); ¹³C NMR (100 MHz, CDCl₃) § 169.8, 169.3, 145.7, 145.4, 144.0, 143.9, 138.0, 129.7, 129.4, 129.2, 128.9, 128.7, 128.0, 127.0, 126.4, 126.0, 125.2, 113.4, 112.6, 110.9, 110.2, 59.3, 55.9, 55.8, 53.6, 42.9, 42.0, 41.7, 34.9, 28.6, 28.0, 22.0, 20.8; MS (CI) 312 (M⁺ + 1, 100), 220, 178. HRMS (FAB) m/z calcd for C₁₉H₂₁NO₃ [MH]⁺ 312.1600; found 312.1597.

4.1.3.20. 2-Acetyl-7-hydroxy-1-isobutyl-6-methoxy-1,2,3,4-tetrahydroisoquinoline (9e). Same procedure as for 9a was followed with 8e (0.73 mmol, 0.20 g), acetic anhydride (0.73 mmol, 75 mg) and Et₃N (3.7 mmol, 0.37 g) and it gave **9e** (148 mg, 73%) as a white solid: m.p. 136–137 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.66 (s, one conformer of C6–H or C8-H), 6.61 (s, one conformer of C6-H or C8-H), 6.58 (s, one conformer of C6-H or C8-H), 6.54 (s, one conformer of C6–H or C8–H), 5.64–5.56 (m. one conformer of C1–H), 4.70-4.64 (m, one conformer of C1-H), 4.58-4.39 (m, one conformer of C3-H), 3.86 (s, one conformer of OCH₃), 3.84 (s, one conformer of OCH₃), 3.80-3.71 (m, one conformer of C3-H), 3.58-3.47 (m, one conformer of C3-H), 3.18-3.07 (m, one conformer of C3-H), 2.94-2.81 (m, one conformer of C4-H, 1H), 2.76-2.69 (m, one conformer of C4-H, 1H), 2.17 (s, one conformer of -NCOCH₃), 2.157 (s, one conformer of $-NCOCH_3$), 1.83-1.38 (m, 3H), 1.10–0.88 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 169.5, 145.5, 145.2, 144.1, 143.8, 131.1, 129.9, 125.5, 124.4, 113.3, 112.5, 110.9, 110.5, 55.9, 55.6, 50.4, 46.5, 46.0, 40.3, 35.8, 28.6, 27.4, 25.0, 24.7, 23.4, 23.1, 22.7, 22.4, 21.6, 21.4. Anal. calculated (C₁₆H₂₃NO₃) C, 69.29; H, 8.36; N, 5.05; found C, 69.26; H, 8.60; N, 5.02.

4.1.3.21. 2-Acetyl-1-cyclopropyl-7-hydroxy-6-methoxy-1,2,3,4tetrahydroisoquinoline (9f). Same procedure as for 9a was followed with 8f (0.77 mmol, 0.20 g), acetic anhydride (0.77 mmol, 78 mg) and Et₃N (3.9 mmol, 0.39 g) and it gave 9f (145 mg, 72%) as a white solid: m.p. 175–176 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.83 (s, one conformer of C6–H or C8–H), 6.74 (s, one conformer of C6–H or C8–H), 6.59 (s, one conformer of C6–H or C8–H), 6.56 (s, one conformer of C6–H or C8–H), 4.95 (d, J = 8.8 Hz, one conformer of C1–H), 4.72–4.63 (m, one conformer of C3–H), 4.17 (d, J = 8.0 Hz, one conformer of C1–H), 3.858 (s, one conformer of OCH₃), 3.848 (s, one conformer of OCH₃), 3.85–3.78 (m, one conformer of C3–H), 3.72–3.63 (m, one conformer of C3–H), 3.30–3.18 (m, one conformer of C3–H), 2.96–2.60 (m, one conformer of C4–H, 2H), 2.17 (s, one conformer of –NCOCH₃), 2.12 (s, one conformer of –NCOCH₃), 1.30–1.10 (m, 1H), 0.77–0.48 (m, 3H), 0.44–0.34 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 145.5, 144.0, 143.7, 129.9, 128.5, 125.7, 124.5, 114.6, 113.3, 112.7, 110.8, 110.4, 60.4, 55.9, 55.5, 41.2, 36.1, 28.8, 27.7, 21.7, 21.5, 18.0, 17.8, 5.31, 5.25, 2.9, 2.5. Anal. calculated (C₁₅H₁₉NO₃) C, 68.94; H, 7.33; N, 5.36; found C, 68.94; H, 7.47; N, 5.35.

4.1.3.22. 2-Acetyl-1-cyclobutyl-7-hydroxy-6-methoxy-1,2,3,4tetrahydroisoquinoline (9g). Same procedure as for 9a was followed with 8g (0.88 mmol, 0.24 g), acetic anhydride (0.88 mmol, 89 mg) and Et_3N (4.4 mmol, 0.44 g) and it gave **9g** (195 mg, 80%) as a white solid: m.p. 123-124 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.70 (s, one conformer of C6–H or C8-H), 6.65 (s, one conformer of C6-H or C8-H), 6.58 (s, one conformer of C6-H or C8-H), 6.56 (s, one conformer of C6–H or C8–H), 5.46 (d, J = 9.6 Hz, one conformer of C1-H), 4.68-4.60 (m, one conformer of C3-H), 4.50 (d, J = 9.2 Hz, one conformer of C1–H), 3.85 (s, one conformer of OCH₃), 3.84 (s, one conformer of OCH₃), 3.77-3.69 (m, one conformer of C3-H), 3.58-3.44 (m, one conformer of C3-H), 3.04-2.95 (m, one conformer of C3-H), 2.92-2.68 (m, one conformer of C4-H, 2H), 2.66-2.55 (m, 1H), 2.21 (s, one conformer of -NCOCH₃), 2.15 (s, one conformer of $-NCOCH_3$), 2.10-1.90 (m, 3H), 1.89-1.68 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 169.3, 145.6, 145.4, 143.8, 143.5, 129.5, 128.4, 125.2, 124.1, 113.0, 112.2, 111.1, 110.6, 61.5, 56.0, 55.9, 41.4, 41.1, 41.0, 35.7, 28.6, 27.8, 27.6, 27.4, 26.1, 25.5, 21.9, 21.7, 17.6. Anal. calculated (C₁₆H₂₁NO₃) C, 69.79; H, 7.69; N, 5.09; found C, 70.01; H, 7.81; N, 5.06.

4.1.4. Procedures for the preparation of 11a-e

4.1.4.1. 2-Ethylcarbonvl-7-hvdroxy-6-methoxy-1,2,3,4-tetrahy*droisoquinoline* (11a). To a solution of 10 in CH_2Cl_2 (10 mL) were added propionic anhydride and Et₃N and stirred for 1 h at room temperature (Scheme 3). The reaction was quenched by addition of water and the organic layer was extracted with additional CH₂Cl₂ (5 mL). After CH₂Cl₂ was evaporated at reduced pressure, residual oil was dissolved in methanol (10 mL) and K₂CO₃ was added. The reaction was refluxed for 3 h. The solution was filtered and excess CH₂Cl₂ was poured. The organic layer was washed with 1.0 M HCl solution (20 mL) and brine (10 mL). The organic solution was dried over Na₂SO₄ and concentrated by evaporation. Flash column chromatography (1:1, EtOAc:hexane) gave 11a as a white solid: m.p. 95–96 °C; ¹H NMR (200 MHz, CDCl₃) δ 6.71 (s, one conformer of C5-H or C8-H), 6.66 (s, one conformer of C5-H or C8-H), 6.62 (s, one conformer of C5-H or C8-H), 6.60 (s, one conformer of C5-H or C8-H), 6.10 (s, one conformer of O-H), 5.96 (s, one conformer of O-H), 4.62 (s, one conformer of C1-H), 4.50 (s, one conformer of C1-H), 3.86 (s, O CH₃, 3H), 3.95-3.49 (m, C4-H, 2H), 2.85-2.70 (m, C3-H, 2H), 2.46 (q, J = 7.4 Hz, 2H), 1.15-1.05 (m, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 172.8, 145.5, 144.6, 144.3,

Scheme 3. (a) Propionic anhydride, butyryl chloride, cyclohexanecarbonyl chloride, isobutyryl chloride, or 3-methylbutyryl chloride, TEA, CH_2Cl_2 , rt, 1 h; (b) K_2CO_3 , MeOH, reflux, 2 h; (c) LAH, THF, reflux, 3–5 h.

126.12, 126.11, 112.5, 111.8, 111.0, 110.6, 56.0, 46.8, 43.8, 43.2, 39.8, 29.1, 28.1, 26.9, 26.7, 9.4; MS (EI) 235 (M⁺, 100), 220, 178, 163, 150, 135. HRMS (EI) *m*/*z* calcd for $C_{13}H_{17}NO_3$ [M]⁺ 235.1208; found 235.1208.

4.1.4.2. 7-Hydroxy-6-methoxy-2-propylcarbonyl-1,2,3,4-tetrahydroisoquinoline (11b). Same procedure as for 11a was followed with 10 (1.0 mmol, 0.22 g), butyryl chloride (1.0 mmol, 93 mg), Et₃N (4.5 mmol, 0.45 g), and K₂CO₃ (0.1 g) and it gave **11b** (187 mg, 75%) as a white solid: m.p. 115–116 °C; ¹H NMR (200 MHz, CDCl₃) δ 6.71 (s, one conformer of C5-H or C8-H), 6.66 (s, one conformer of C5-H or C8-H), 6.61 (s, one conformer of C5-H or C8-H), 6.60 (s, one conformer of C5-H or C8-H), 6.21 (s, one conformer of O-H), 6.03 (s, one conformer of O-H), 4.62 (s, one conformer of C1-H), 4.50 (s, one conformer of C1-H), 3.85 (s, O CH₃, 3H), 3.95–3.60 (m, C4–H, 2H), 2.90–2.70 (m, C3– H, 2H), 2.46 (t, J = 7.4 Hz, 2H), 1.80–1.60 (m, 2H), 1.05– 0.90 (m, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 172.1, 145.8, 144.7, 144.5, 126.2, 125.2, 112.7, 111.9, 111.2, 110.8, 56.1, 47.1, 43.9, 43.5, 39.9, 35.8, 35.7, 29.3, 28.2, 18.7, 14.1; MS (EI) 249 (M⁺, 100), 220, 178, 163, 150. HRMS (EI) m/z calcd for C₁₄H₁₉NO₃ [M]⁺ 249.1365; found 249.1361.

4.1.4.3. 2-Cyclohexylcarbonyl-7-hydroxy-6-methoxy-1,2,3,4tetrahydroisoquinoline (11c). Same procedure as for 11a was followed with 10 (2.0 mmol, 0.43 g), cyclohexanecarbonyl chloride (4.0 mmol, 0.59 mg), Et₃N (0.9 mL), and K_2CO_3 (0.32 g) and it gave **11c** (302 mg, 57%) as a white solid: m.p. 160–161 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.71 (s, one conformer of C5-H or C8-H), 6.68 (s, one conformer of C5-H or C8-H), 6.61 (s, one conformer of C5-H or C8-H), 6.59 (s, one conformer of C5-H or C8-H), 5.83 (s, one conformer of O-H), 5.68 (s, one conformer of O-H), 4.61 (s, one conformer of C1-H), 4.54 (s, one conformer of C1-H), 3.861 (s, one conformer of O CH₃), 3.857 (s, one conformer of O CH₃), 3.79 (t, J = 6.0 Hz, one conformer of C4-H), 3.68 (t, J = 6.0 Hz, one conformer of C4-H), 2.81 (t, J = 5.6 Hz, one conformer of C3–H), 2.74 (t, J = 5.6 Hz, one conformer of C3-H), 2.59-2.49 (m, 1H), 1.90-1.64

(m, 5H), 1.64–1.44 (m, 2H), 1.38–1.28 (m, 3H); 13 C NMR (100 MHz, CDCl₃) δ 174.9, 174.8, 145.4, 145.3, 144.4, 144.1, 126.3, 126.3, 125.2, 125.0, 112.4, 111.6, 110.9, 110.42, 56.0, 46.9, 44.0, 43.2, 41.1, 41.0, 40.0, 29.6, 29.4, 29.3, 28.1, 26.0, 25.9; MS (EI) 289 (M⁺, 100), 274, 178, 163, 150. HRMS (EI) *m/z* calcd for C₁₇H₂₃NO₃ [M]⁺ 289.1678; found 289.1682.

4.1.4.4. 7-Hydroxy-2-isopropylcarbonyl-6-methoxy-1,2,3,4-tetrahydroisoquinoline (11d). Same procedure as for 11a was followed with 10 (1.0 mmol, 0.22 g), isobutyryl chloride (2.0 mmol, 21 µL), Et₃N (0.5 mL), and K₂CO₃ (0.16 g) and it gave 11d (178 mg, 71%) as a white solid: m.p. 115-117 °C; ¹H NMR (200 MHz, CDCl₃) δ 6.76 (s, one conformer of C5-H or C8-H), 6.67 (s, one conformer of C5-H or C8-H), 6.61 (s, one conformer of C5-H or C8-H), 6.20 (s, one conformer of O-H), 6.00 (s, one conformer of O-H), 4.61 (s, one conformer of C1-H), 4.55 (s, one conformer of C1-H), 3.86 (s, O CH₃, 3H), 3.95-3.60 (m, C4-H, 2H), 3.00-2.65 (m, 3H), 1.45 (t, J = 6.6 Hz, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 175.8, 145.5, 144.4, 126.3, 125.0, 112.6, 111.7, 111.0, 110.7, 56.0, 46.8, 44.0, 43.1, 40.1, 30.4, 29.4, 28.0, 19.3; MS (EI) 249 (M⁺, 100), 234, 206, 178, 163, 150. HRMS (EI) m/z calcd for C₁₄H₁₉NO₃ [M]⁺ 249.1365; found 249.1368.

4.1.4.5. 7-Hydroxy-2-isobutylcarbonyl-6-methoxy-1,2,3,4-tetrahydroisoquinoline (11e). Same procedure as for 11a was followed with 10 (1.0 mmol, 0.22 g), 3-methylbutyryl chloride (2.0 mmol, 25 µL), Et₃N (0.5 mL), and K₂CO₃ (0.16 g) and it gave 11e (158 mg, 60%) as a white solid: m.p. 141-142 °C; ¹H NMR (200 MHz, CDCl₃) δ 6.71 (s, one conformer of C5-H or C8-H), 6.66 (s, one conformer of C5-H or C8-H), 6.61 (s, one conformer of C5–H or C8–H), 6.60 (s, one conformer of C5-H or C8-H), 6.21 (s, one conformer of O-H), 6.04 (s, one conformer of O-H), 4.63 (s, one conformer of C1-H), 4.51 (s, one conformer of C1-H), 3.85 (s, O CH₃, 3H), 3.95–3.60 (m, C4–H, 2H), 2.85–2.67 (m, 2H), 2.38–2.05 (m, 3H), 1.10–0.95 (m, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 171.4, 145.7, 145.5, 144.6, 144.3, 126.2, 126.1, 125.0, 112.5, 111.7, 111.0, 110.6, 55.9, 47.2, 43.8, 43.6, 42.5, 42.3, 39.8, 29.2, 28.1, 25.6, 22.7; MS (EI) 263 (M⁺), 220 (100), 206, 178, 163, 150. HRMS (EI) *m/z* calcd for $C_{15}H_{21}NO_3$ [M]⁺ 263.1521; found 263.1523.

4.1.5. Procedures for the preparation of 12a-c (Scheme 3)

4.1.5.1. 7-Hydroxy-6-methoxy-2-propyl-1,2,3,4-tetrahydroisoquinoline hydrochloride (**12a**). To a solution of **11a** (0.68 mmol, 0.16 g) in freshly distilled THF (10 mL) was added 1.0 M lithium aluminium hydride (0.6 mL) in THF solution. The reaction mixture was refluxed for 4 h and cooled to room temperature. The reaction was quenched by EtOAc, 1.0 M NaOH solution, and H₂O and the solution was filtered. Organics were extracted by CH₂Cl₂ (20 mL) and concentrated under reduced pressure. Flash column chromatography (5% MeOH/CH₂Cl₂) was performed and **12a** (138 mg, 92%) was th-°C Accumulated nitrite, a set of the grade of the gr

5 °C Accumulated nitrite, a stable oxidation metabolite of NO, 1H), was measured by the Griess reaction [24]. Briefly, 200 μ L aliquots of the culture medium were mixed with 100 μ L of Griess reagent (1% sulfanilamide, 0.1% naphthylethylenediamine (m, dihydrochloride, and 2.5% H₃PO₄) in a 96-well microtiter plate, and the absorbance was read at 540 nm. The effect of each compound on NO production was expressed as the percentage of NO produced by the LPS-treated control cells.

4.2.3. BH4 production

BH4 produced was determined according to the method reported previously [25]. To the 900 μ L aliquot of culture medium, 100 μ L of 1 M phosphoric acid and 200 μ L of acidic iodine solution (0.5% I₂ and 1.0% KI in 0.2 M trichloroacetic acid) were added and incubated for 1 h in the dark. The oxidation reaction was terminated by addition of 0.1 mL of 0.1% ascorbic acid. The reaction mixture was then centrifuged for 15 min at 8000×g and the supernatant was diluted with distilled water. BH4 was separated isocratically with 5% methanol as mobile phase using HPLC and detected by a fluorescence detector (Waters, Boston, MA, USA). BH4 standard curve was prepared every time. The BH4 content was calculated using Waters 991 computerized integrator system as nanograms of BH4 per milligram of cellular protein and expressed as percentage of LPS-treated control.

4.2.4. Determination of cytotoxicity by LDH activity

Cytotoxicity of the newly synthesized compounds was assessed by determining the activity of LDH released into the culture medium. Aliquots (50 μ L) of cell culture medium were incubated at room temperature in the presence of 0.26 mM NADH, 2.87 mM sodium pyruvate, and 100 mM potassium phosphate buffer (pH 7.4) in a total volume of 200 μ L. The rate of NAD⁺ formation was monitored for 5 min at 2-s intervals at 340 nm using a microplate spectrophotometer (SPECTRA MAX 340 pc; Molecular Devices, Menlo Park, CA). Cytotoxicity values were expressed as percentage of LDH released by the tetrahydroisoquinoline derivatives compared with that released from LPS-treated control cells and thus, numbers approaching 100 indicate no toxicity.

Acknowledgements

This work was supported by the Brain Research Center of the 21st Century Frontier Research Program of the Ministry of Science and Technology (M103KV010011-06K2201-01110), the Korea Health 21 R&D Project (A05-0242-A20718-05N1-00010A), and KOSEF grant funded by National Research and Development Program of MOST, Korea (2006-03770).

References

- D.J. Stuehr, N.S. Kwon, C.F. Nathan, O.W. Griffith, P.L. Feldman, J. Wiseman, J. Biol. Chem. 266 (1991) 6259–6263.
- [2] R.F. Furchgott, J.V. Zawadzki, Nature 288 (1980) 373-376.
- [3] S. Moncada, A. Higgs, N. Engl. J. Med. 329 (1993) 2002-2012.
- [4] C. Nathan, Q.W. Xie, Cell 78 (1994) 915-918.

crystallized as a hydrochloride salt (off-white solid) from ethanol and 1.0 M hydrochloride diethyl ether: m.p. 203–205 °C dec.; ¹H NMR (400 MHz, DMSO- d_6) δ 9.14 (br s, OH, 1H), 6.74 (s, 1H), 6.59 (s, 1H), 4.27 (d, J = 12.6 Hz, 1H), 4.06 (dd, J = 16.0, 8.0 Hz, 1H), 3.75 (s, 3H), 3.37 (br s, 1H), 3.25–3.00 (m, 4H), 2.95–2.90 (br m, 1H), 1.85–1.75 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 147.3, 145.4, 121.6, 120.1, 112.9, 111.8, 56.4, 55.6, 51.0, 48.7, 24.3, 16.8, 11.0; MS (EI) 221 (M⁺), 192 (100), 150. HRMS (EI) *m*/*z* calcd for C₁₃H₁₉NO₂ [M]⁺ 221.1416; found 221.1415.

4.1.5.2. 2-Butyl-7-hydroxy-6-methoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (**12b**). Same procedure as for **12a** was performed with **11b** (0.56 mmol, 0.14 g) and 1.0 M lithium aluminium hydride (0.6 mL) and it gave **12b** (92 mg, 70%) as a hydrochloride salt (white solid): m.p. 105–110 °C dec.; ¹H NMR (200 MHz, DMSO- d_6) δ 6.77 (s, 1H), 6.60 (s, 1H), 4.34 (d, J = 13.6 Hz, 1H), 4.06 (dd, J = 15.2, 8.0 Hz, 1H), 3.75 (s, 3H), 3.37 (br s, 1H), 3.25–3.00 (m, 4H), 2.95–2.90 (br m, 1H), 1.85–1.75 (m, 2H), 1.50–1.25 (m, 2H), 0.93 (t, J = 7.0 Hz, 3H); ¹³C NMR (50 MHz, DMSO- d_6) δ 147.3, 145.4, 121.6, 120.1, 112.9, 111.8, 55.6, 54.6, 51.0, 48.7, 25.1, 24.3, 19.5, 13.5; MS (EI) 235 (M⁺), 192 (100), 150. HRMS (EI) m/z calcd for C₁₄H₂₁NO₂ [M]⁺ 235.1572; found 235.1571.

4.1.5.3. 2-Cyclohexylmethyl-7-hydroxy-6-methoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (12c). Same procedure as for 12a was performed with 11c (0.6 mmol, 0.18 g) and 1.0 M lithium aluminium hydride (0.4 mL) and it gave 12c (149 mg, 90%) as a hydrochloride salt (off-white solid): m.p. 193–195 °C; ¹H NMR (200 MHz, DMSO-d₆) δ 6.76 (s, 1H), 6.61 (s, 1H), 4.34 (d, J = 13.2 Hz, 1H), 4.11 (dd, J = 15.2, 7.2 Hz, 1H), 3.74 (s, 3H), 3.65–2.65 (m, 6H), 2.00–1.65 (m, 6H), 1.40–1.80 (m, 5H); ¹³C NMR (50 MHz, DMSO-d₆) δ 147.3, 145.4, 121.5, 119.9, 113.1, 111.8, 60.6, 55.9, 55.6, 32.1, 30.7, 25.4, 25.0, 23.9, 18.5; MS (EI) 275 (M⁺), 192 (100), 150. HRMS (EI) *m*/*z* calcd for C₁₇H₂₅NO₂ [M]⁺ 275.1885; found 275.1885.

4.2. Biology

4.2.1. Cell culture

BV-2 cells, a murine microglial cell line, were grown and maintained in DMEM supplemented with 10% fetal calf serum and penicillin-streptomycin at 37 °C in a humidified incubator under 5% CO₂. For experiments, the cells were plated on polystyrene tissue culture dishes at a density of 2×10^5 cells/well in 24-well culture plates. After 24 h, the cells were changed into fresh medium and treated with bacterial LPS (0.2 µg/mL). The tetrahydroisoquinoline derivatives (at various concentrations dissolved in DMSO) were added at the same time with LPS treatment. After 24 h, the medium was taken to measure NO and BH4 and lactate dehydrogenase (LDH) activity.

- [5] D.S. Bredt, S.H. Snyder, Annu. Rev. Biochem. 63 (1994) 175-195.
- [6] U. Förstermann, J.S. Pollock, H.H.H.W. Schmidt, M. Heller, F. Murad, Proc. Natl. Acad. Sci. U.S.A. 88 (1991) 1788–1792.
- [7] H.H.H.W. Schmidt, F. Murad, Biochem. Biophys. Res. Commun. 181 (1991) 1372–1377.
- [8] K.D. Kröncke, K. Fehsel, V. Kolb-Bachofen, Biol. Chem. 376 (1995) 327-343.
- [9] M.A. Marletta, J. Biol. Chem. 268 (1993) 12231-12234.
- [10] D.W. Choi, S.M. Rothman, Annu. Rev. Neurosci. 13 (1990) 171-182.
- [11] M.A. Dorheim, W.R. Tracey, J.S. Pollock, P. Grammas, Biochem. Biophys. Res. Commun. 205 (1994) 659–665.
- [12] P.F. Good, A. Hsu, P. Werner, D.P. Perl, C.W. Olanow, J. Neuropathol. Exp. Neurol. 57 (1998) 338–342.
- [13] H. Li, T. Wallerath, T. Mürzel, U. Förstermann, Nitric Oxide-Biol. Chem. 7 (2002) 149–164.
- [14] N. Kobayashi, Y. Mori, S.-i. Mita, S. Nakano, T. Kobayashi, Y. Tsubokou, H. Matsuoka, Eur. J. Pharmacol. 422 (2001) 149–157.
- [15] C.E. Wright, D.D. Rees, S. Moncada, Cardiovasc. Res. 26 (1992) 48-57.
- [16] W.K. Alderton, C.E. Cooper, R.G. Knowles, Biochem. J. 357 (2001) 593-615.
- [17] A. Reif, L.G. Fröhlich, P. Kotsonis, A. Frey, H.M. Bömmel, D.A. Wink, W. Pfleiderer, H.H.H.W. Schmidt, J. Biol. Chem. 274 (1999) 24921–24929.

- [18] K.M. Channon, Trends Cardiovasc. Med. 14 (2004) 323-327.
- [19] S. Cho, B.T. Volpe, Y. Bae, O. Hwang, H.J. Choi, J. Gal, L.C. Park, C.K. Chu, J. Du, T.H. Joh, J. Neurosci. 19 (1999) 878–889.
- [20] S. Cho, Y. Kim, M.O. Cruz, E.-M. Park, C.K. Chu, G.Y. Song, T.H. Joh, Glia 33 (2001) 324–333.
- [21] J.W. Seo, E. Srisook, H.J. Son, O. Hwang, Y.-N. Cha, D.Y. Chi, Bioorg. Med. Chem. Lett. 15 (2005) 3369–3373.
- [22] A. Pictet, T. Spengler, Chem. Ber. 44 (1911) 2030-2036.
- [23] K. Iwasa, M. Kamigauchi, N. Takao, Phytochemistry 9 (1991) 2973– 2976.
- [24] L.C. Green, D.A. Wagner, J. Glogowski, P.L. Skipper, J.S. Wishnok, S.R. Tannenbaum, Anal. Biochem. 126 (1982) 131–138.
- [25] H.J. Choi, Y.J. Jang, H.J. Kim, O. Hwang, Mol. Pharmacol. 58 (2000) 633-640.
- [26] Y. Inubushi, Y. Masaki, S. Matsumoto, F. Takami, J. Chem. Soc. C (1969) 1547–1556.
- [27] C.Z. Ran, T.Z. Wu, Y. Xiang, M.H. Xie, Chin. Chem. Lett. 11 (2000) 855–856.
- [28] J.M. Bobbitt, T.-T. Chou, J. Org. Chem. 24 (1959) 1106-1108.
- [29] J.M. Bobbitt, A.S. Steinfeld, K.H. Weisgraber, S. Dutta, J. Org. Chem. 3 (1969) 2478–2479.
- [30] J.M. Bobbitt, T.Y. Cheng, J. Org. Chem. 42 (1976) 443-449.