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Short-Term Traffic State Prediction Based
on Temporal–Spatial Correlation

T. L. Pan, A. Sumalee, R. X. Zhong, and N. Indra-payoong

Abstract—The stochastic cell transmission model (SCTM) was
originally developed for stochastic dynamic traffic state model-
ing under several assumptions, e.g., the independent/uncorrelated
assumption of the underlying stochastic processes governing de-
mand and supply uncertainties. However, traffic flow, by nature,
is correlated in both spatial and temporal domains due to its dy-
namics, similar environmental conditions and human behaviors.
The independent assumption in the original SCTM framework
may prevent the model from a broad range of applications, e.g.,
short-term traffic state prediction. In this paper, the SCTM frame-
work is extended to consider the spatial–temporal correlation of
traffic flow and to support short-term traffic state prediction.
First, a multivariate normal distribution (MND)-based best linear
predictor is adopted as an auxiliary dynamical system to the
original SCTM to forecast boundary variables and/or supply func-
tions. The predicted boundary variables and supply functions are
taken as inputs to the SCTM to perform short-term traffic state
prediction. The independent assumption of the SCTM is relaxed
by incorporating the covariance structure calibrated from the spa-
tial correlation analysis for probabilistic traffic state evaluation.
For real-time application purposes, prediction is conducted in a
rolling horizon manner, which is useful for adjusting the predicted
traffic state using real-time measurements. The proposed traffic
state prediction framework is validated by empirical studies that
demonstrate the effectiveness of the proposed method.

Index Terms—Abnormal traffic conditions, rolling horizon,
spatial–temporal correlation, stochastic cell transmission model
(SCTM), traffic state prediction.

I. INTRODUCTION

T RAFFIC networks are exposed to both demand and supply
uncertainties. The SCTM extended the cell transmission

model (CTM) to consider the effects of supply uncertainty
(i.e., stochastic parameters of the fundamental flow–density
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diagram) and demand uncertainty (boundary variables of a
freeway corridor are regarded as demand) on the distribution
of traffic flow for a freeway corridor [20]. All noise terms gov-
erning the stochastic supply and demand are assumed to be de-
scribed by some wide-sense stationary second-order processes,
which are uncorrelated in both space and time domains. Due
to similar environmental conditions, human behaviors, high
traffic density, congestion in the network, and the interaction
of demand and supply uncertainties along with the dynamic
nature of traffic flow, the demand and supply uncertainties
are correlated in both space and time domains. For example,
free-flow speeds are spatially correlated (cell-to-cell, lane-to-
lane correlated) [11]; demand profiles are temporally correlated
[31]; and the traffic state of a specific site is highly affected by
its upstream and downstream traffic conditions [5], [15], [18].
In this paper, spatial correlations refer to calibrated correlations
of supply functions at different locations, e.g., correlations of
free-flow speeds along a freeway corridor, whereas temporal
correlations refer to the dependence of traffic variables in the
time domain. Considering spatial and temporal correlations
along with traffic dynamics bring significant potential advan-
tages for the development of efficient traffic state prediction for
the SCTM paradigm.

Short-term traffic prediction aims at evaluating anticipated
traffic conditions at a future time given the historical traffic
information in the “near future,” which has a horizon of only
a few minutes, and real-time detected traffic information [23],
[27]. Short-term traffic state prediction is one of the criti-
cal components of advanced travelers’ information systems
(ATIS) and advanced traffic management systems (ATMS)
[12]. Major techniques for short-term traffic state prediction
can be divided into three categories in transportation liter-
ature, i.e., 1) parametric methods (see, e.g., [10] and [27]
for an overview), such as dynamic-traffic-assignment-based
models (see, e.g., [17] for an overview) and Kalman filtering
techniques; 2) nonparametric statistical methods, e.g., neural
network models, k-nearest neighbor algorithm (k-NN ) [23],
simulation models, Bayesian models, and support vector re-
gression (see [10] for an overview); and 3) hybrid integra-
tion methods that combine the parametric and nonparametric
methods.

Some researchers may group these methods into statistical-
based and computational intelligence (CI)-based methods. The
statistical approaches have more solid and widely accepted
mathematical foundations than the CI-based approaches. How-
ever, none of these classifications are persuasive enough to
gain the consensus of all researchers. The statistical ap-
proaches, by their very nature the mathematics of collecting,
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organizing, and interpreting numerical data, can also provide
more insights on the mechanisms creating and processing the
data, particularly when the data concern the analysis of pop-
ulation characteristics by inference from sampling [10]. On
the other hand, the statistical approaches frequently fail when
dealing with complex and highly nonlinear data and suffer from
the curse of dimensionality, e.g., the underlying assumptions
of Kalman filtering are: the system is observable; the system
has no strong nonlinearity (so that the system dynamics can
be well approximated by its linearization); and the model
parameters1 are precisely known [1], [9], [27]. On the other
hand, an autoregressive integrated moving-average (including
seasonal autoregressive integrated moving average) approach
is highly computationally intensive, even on only two sensor
locations [15].

The similarities and differences of the statistical- and
CI-based approaches have been discussed in a recent overview
paper [10] and technical papers [1]–[4], [19], [24]. In gen-
eral, it can be inferred from the review that, for the time
being, no single method can consistently outperform the oth-
ers. Moreover, comparison works showed that those complex
theoretically sound methods, e.g., complex statistic models
and neural networks, might not be superior to the simpler
methods, e.g., historical methods. (We refer the readers to
[10] and [27] for detailed comparison and discussion of these
approaches.) However, we may point out that abnormal traffic
patterns caused by nonrecurrent congestion or incidents may
deteriorate the performance of these models (see, e.g., [25]
and [28]). Nevertheless, under most situations, extreme values
are of primary interest in forecasting the change in traffic
conditions.

Most of the existing short-term traffic state prediction meth-
ods are based on the autocorrelation functions of the traffic
variables at a specific location, e.g., the location with mea-
surement devices [27], and do not consider traffic flow theory.
Under this circumstance, on the one hand, traffic state in-
formation on upstream and downstream locations has been
largely neglected in these traffic prediction methods. On the
other hand, traffic dynamics such as shockwaves, queue for-
mation, and queue dissipation and dynamic traffic interac-
tions across multiple links such as queue spillback cannot be
well captured [22]. To overcome this, hybrid approaches that
combine the complementary features and capabilities of both
traffic flow models, e.g., the CTM in [22] and the Lighthill–
Witham–Richards model in [13], and knowledge-based models,
e.g., statistical models, were proposed to effectively describe
traffic flow in road networks. Nonetheless, various types of
traffic data have been shown to exhibit self-similarity and
burstiness. Considering these spatial and temporal correla-
tions along with traffic dynamics bring significant poten-
tial advantages for the development of efficient traffic state
prediction.

Major existing approaches, regarding the treatment of tempo-
ral and spatial features of traffic flow for short-term forecasting,

1This is a common assumption of the parametric methods. The parametric
methods may produce larger prediction errors when the model parameters are
biased.

first need to calibrate both temporal and spatial correlations
among the available traffic data. The calibrated results are then
fed to the prediction algorithm externally [27]. In addition to
the extremely large amount of data and arduous calibration,
this kind of method requires evaluations of both autocorre-
lations and cross-correlations to obtain the appropriate time
lag of each correlated series [8]. These preprocessing steps,
which are also computationally expensive, render the spatial
and temporal features of traffic flow difficult to be incorpo-
rated in short-term traffic prediction. An alternative approach
to consider the spatial and temporal correlation analysis is to
utilize dynamics of the traffic model in conjunction with some
extended dynamics, e.g., random walk [29], [30] and colored
noise [7]. In this approach, the spatial and temporal correlations
of the uncertainties are propagated by the extended dynamics
(auxiliary dynamical systems), which, in turn, affects the traffic
flow models by the interconnected structure.

In the SCTM case, by introducing the cross-correlations
(with/without time lags) directly into the model, its Markovian
property may not be retained. Moreover, most short-term traffic
state prediction methods are based on 5-min (or above) aggre-
gated traffic data. Such an interval would be too large for a
dynamic traffic flow model to produce accurate estimation or
prediction. On the other hand, the calibration of the autocorre-
lations and cross-correlations by a time increment as small as
the simulation time increment of a traffic flow model will be too
computationally intensive and impractical. Due to the discrete-
time stochastic bilinear system formulation of the SCTM, it is
convenient for us to extend the SCTM to consider the spatial
and temporal correlations of demand and supply functions
by the auxiliary dynamical system approach. In this paper,
a multivariate normal distribution (MND)-based best linear
predictor is adopted to forecast boundary variables (or demand)
and supply functions by incorporating the historical temporal
correlated traffic flow data and real-time detected data as inputs.
Similar to the spatial correlation analysis recently developed
in wireless sensor networks, we assume the samples of spatial
correlation to be temporally independent or uncorrelated. This
assumption reduces the complexity of the problem and ensures
the separability of the spatial and temporal covariance matri-
ces. The predicted boundary variables and supply functions
are imported to the SCTM to perform short-term traffic state
prediction. The independent assumption of the SCTM is relaxed
by incorporating the covariance structure, which is calibrated
from the spatial correlation analysis of the measured traffic
flow data, for probabilistic traffic state evaluation. For real-
time application purposes, prediction is conducted in a rolling
horizon manner.

The rest of this paper is structured as follows. Section II
reviews the SCTM and extends it to consider spatial correla-
tions. Section III introduces a multivariate best linear predictor
to extend the SCTM to consider the correlations of traffic
flow for forecasting boundary variables and supply functions.
Section IV introduces the concept of rolling horizon and pro-
poses a framework for real-time prediction. Section V conducts
an empirical study for traffic state prediction on a segment
of I210-W. Finally, conclusions are drawn and future work is
discussed in Section VI.
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Fig. 1. Stochastic inflow and fundamental diagram.

II. DESCRIPTIONS OF THE STOCHASTIC CELL

TRANSMISSION MODEL AND ITS EXTENSION

The stochastic cell transmission model (SCTM) is a stochas-
tic dynamic traffic flow model for a freeway segment proposed
by Sumalee et al. [20] and later extended to the network case
by Zhong et al. [32]. The SCTM considers the stochastic char-
acteristics of the fundamental diagram (uncertain flow–density
relationship) and admits the stochastic travel demand as an
exogenous input, as shown in Fig. 1. For the supply side,
the means and variances of different parameters (i.e., free-
flow speed, jam-density, critical-density, and backward-wave
speed), which govern the fundamental diagram, are calibrated
based on the statistics of the observed data (e.g., the gray dots
on the right-hand side in Fig. 1) for each section equipped
with detectors. The SCTM defines the random inflows (un-
certain demand) and random parameters of the fundamental
flow–density diagram (uncertain supply functions) as boundary
variables. It accepts the means and variances of the boundary
variables as exogenous inputs and then calculates the means
and variances of the traffic densities, outflow of the freeway
segment, and probabilities of its operational modes as outputs
based on the measured boundary conditions. To be specific,
at each simulation time step, the stochastic flow propagation
between adjacent cells under each mode can be determined
by the flow–density relationship. Each of these stochastic flow
profiles is associated with a certain probability corresponding
to an operational mode. The flow propagated from the up-
stream to downstream cell in the next time step is a mixture
distribution of the stochastic flows of the operational modes.
The performance of the SCTM in estimating stochastic traffic
densities and dynamic travel time distribution against empirical
freeway traffic data was validated in [20] and [21]. Fig. 2
shows the application of the SCTM to represent a freeway
segment without on-ramp or off-ramp, which is divided into
two cells. Similar to the switching-mode model proposed by
Muñoz et al. [14], five probabilistic events (we refer to them
as five operational modes hereafter) are defined in the SCTM
to represent the freeway state under different congestion levels,
i.e., two steady-state modes, namely, the FF mode and the CC
mode, and three transient modes, namely, the CF mode, the FC1
mode, and the FC2 mode. The division of the FC1 and FC2
modes depends on the moving direction of the wavefront. If the
wavefront is moving downstream, then the freeway segment is

Fig. 2. Five traffic operational modes for a freeway segment with two cells.

in the FC1 mode; otherwise, it is in the FC2 mode. Due to the
random demand and supply, the SCTM defines the probabilities
of occurrences for these five events. Each mode of the SCTM
can be represented by the following bilinear system formula-
tion as

ρ(k + 1) =

(
A0 +

2∑
i=1

Aiωi(k)

)
ρ(k)

+

(
B0 +

2∑
i=1

Biωi(k)

)
λ(k) +Bu(k) (1)

where B, Ai, and Bi, i = 0, 1, 2, are constant matrices to
be defined later, and ωi(k), ∀k ∈ N , are second-order pro-
cesses consisting of mutually uncorrelated real-valued random
variables.

In the FF mode, we set ωi(k) to be the free-flow speed vf,i(k)
in (1), and the state equation can be represented as

ρ(k + 1) =

(
I +

2∑
i=1

Aivf,i(k)

)
ρ(k) +Bu(k) (2)

where

A1 =

[−Ts

l1
0

Ts

l2
0

]

A2 =

[
0 0
0 −Ts

l2

]

B =

[
Ts

l1
0

0 0

]
.

Equation (2) is a special case of (1) with Bi, i = 1, 2 being
null matrices and λ(k) being a null vector.
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In the CC mode, we define ωi(k) = wc,i(k) and the vector
λ(k) = (ρJ,1(k), ρJ,2(k))

T . The state equation is then

ρ(k + 1) =

(
I +

2∑
i=1

Aiwc,i(k)

)
ρ(k)

+
2∑

i=1

Biwc,i(k)λ(k) +Bu(k) (3)

where

A1 =

[
−Ts

l1
0

0 0

]
A2 =

[
0 Ts

l1

0 −Ts

l2

]

B =

[
0 0
0 −Ts

l2

]
Bi = −Ai, i = 1, 2.

In the CF mode, we can define ω1(k) = wc,1(k), ω2(k) =
vf,2(k), and the vectorλ(k)=(ρJ,1(k), Q(k))T . The state equa-
tion is then

ρ(k + 1) =

(
I +

2∑
i=1

Aiωi(k)

)
ρ(k)

+

(
B0 +

2∑
i=1

Biωi(k)

)
λ(k) +Bu(k) (4)

where

A1 =

[
−Ts

l1
0

0 0

]
, A2 =

[
0 0
0 −Ts

l2

]

B0 =

[
0 −Ts

l1

0 Ts

l2

]
, B1 = −A1 B2 = 0 B = 0.

In the FC1 mode, we define ω1(k) = vf,1(k), ω2(k) = 0,
and λ(k) as a null vector. The state equation is then

ρ(k + 1) = (I +A1ω1(k)) ρ(k) +Bu(k) (5)

where

A1 =

[−Ts

l1
0

Ts

l2
0

]
, B =

[ Ts

l1
0

0 −Ts

l2

]
.

In the FC2 mode, we define ω1(k) = 0, ω2(k) = wc,2(k),
and λ(k) = (0, ρJ,2(k))T . The state equation is

ρ(k + 1) = (I +A2ω2(k)) ρ(k) +B2ω2(k)λ(k) +Bu(k)

where

A1 = 0, A2 =

[
0 Ts

l1

0 −Ts

l2

]

B1 = 0, B2 =

[
0 −Ts

l1

0 Ts

l2

]
, B =

[ Ts

l1
0

0 −Ts

l2

]
.

The evaluation of the mean and variance of the given bilinear
system is studied in [20]. The corresponding probabilities of

occurrence of the five modes can be defined as follows:
FF mode: PFF (k)

Δ
= Pr(ρu(k − 1) < ρc,1(k − 1) ∩ ρd(k −

1) < ρc,2(k − 1));

CC mode: PCC(k)
Δ
= Pr(ρu(k − 1) ≥ ρc,1(k − 1) ∩ ρd(k −

1) ≥ ρc,2(k − 1));

CF mode: PCF (k)
Δ
= Pr(ρu(k − 1) ≥ ρc,1(k − 1) ∩ ρd(k −

1) < ρc,2(k − 1)); and

FC mode: PFC(k)
Δ
= 1 − (PFF (k) + PCC(k) + PCF (k)),

with the wavefront moving downstream as

PD|FC(k)
Δ
= Pr (vf,1(k − 1)ρ̄1(k − 1)

≤ w2(k − 1) (ρJ,2(k − 1)− ρ̄2(k − 1)))

and the wavefront moving upstream as PU |FC(k) = 1 −
PD|FC(k). Then, the probabilities of FC1 and FC2 to occur

at time step k are FC1 mode: PFC1(k)
Δ
= PD|FC(k)PFC(k)

and FC2 mode: PFC2(k)
Δ
= PU |FC(k)PFC(k), where ρc,i is

the critical density, wi is the backward congestion wave speed,
and ρJ,i is the jam density of cell i, respectively. ρ̄i is the joint
density of cell i, which is defined as a finite mixture distri-
bution of the five modes. Denote the joint traffic density vector
and its mean and covariance matrix as ρ̄(k), E(ρ̄(k)|θ(k)), and
Var(ρ̄(k)|θ(k)), where θ(k)={θs(k)}, θs(k)=(ρs(k), Ps(k)),
and ρs(k) denote the vector of cell densities of mode s. The
probability density function (pdf) of joint traffic density f(ρ̄(k)|
θ(k)) is defined as

f (ρ̄(k)|θ(k)) =
∑
s

Ps(k)f (ρ̄(k)|θs(k)) . (6)

Under mixture model (6), expectation E(ρ̄(k)|θ(k)) is given by

E (ρ̄(k)|θ(k)) =
∑
s

Ps(k)E (ρs(k)) . (7)

Let μs(k)=E(ρs(k)) and μ(k)=E(ρ̄(k)|θ(k)). Then, μ(k) =∑
s Ps(k)μs(k). To evaluate Var(ρ̄(k)|θ(k)), we define the co-

variance matrix of ρs(k) as

ψs(k) = E
(
(ρs(k)− μs(k)) (ρs(k)− μs(k))

T
)
.

Then, covariance matrix Var(ρ̄(k)|θ(k)) can be evaluated as

Var (ρ̄(k)|θ(k))

=
∑
s

Ps(k)
(
ψs(k) + μs(k)μ

T
s (k)

)
− μ(k)μT (k). (8)

In the original SCTM, the uncorrelated assumption is en-
forced to simplify the probability evaluation and traffic flow
propagation. This uncorrelated assumption is no longer valid
when the spatial–temporal correlations are incorporated into
the model, which, in turn, affects two major components of the
SCTM, i.e., evaluations of probabilities of occurrence of dif-
ferent modes and traffic flow propagation. Here, we investigate
the scenarios introduced in [20, Sec. 3.3]. To begin with, we
define Xud as Xud = [Xu, Xd]

T = [ρ̃u(k)− ρc,1(k), ρ̃d(k)−
ρc,2(k)]

T , where we have omitted time index k to Xud to save
notation. Then, the pdf of Xud is a bivariate normal distribution
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Fig. 3. PDF and probabilities of occurrence of modes.

as all its components are assumed to be normally distributed,
i.e.,

pdf(Xud;μud,Σud) =
1

(2π)|Σud|1/2
e−Q(Xud;μud,Σud)/2 (9)

where μud = (μu, μd)
T = (ρ̄u − ρ̄c,1, ρ̄d − ρ̄c,2)

T is the ex-
pectation of Xud, and Σud is the covariance matrix, with

Σud =

[
Var(Xu) Cov(Xu, Xd)

Cov(Xu, Xd) Var(Xd)

]

and Q(Xud;μud,Σud)=(Xud −μud)
T
∑−1

ud(Xud −μud). The
probability of occurrence of the FF mode is now

PFF (k)
Δ
= Pr (ρ̃u(k) < ρc,1 ∩ ρ̃d(k) < ρc,2)

= Pr(Xu < 0 ∩Xd < 0)

=

0∫
−∞

0∫
−∞

pdf(Xud;μud,Σud)dXudXd. (10)

The probabilities of occurrence of the other modes can be
similarly defined as

PCC(k) =

+∞∫
0

+∞∫
0

pdf(Xud;μud,Σud)dXudXd (11)

PCF (k) =

+∞∫
0

0∫
−∞

pdf(Xud;μud,Σud)dXudXd (12)

PFC(k) = 1 − (PFF (k) + PCC(k) + PCF (k)) . (13)

A demonstration of the pdf of the bivariate normal distribu-
tion previously discussed is given in Fig. 3. The probabilities of
occurrence of different modes can be evaluated by the area of
the corresponding regimes, e.g., the probability of the FF mode
is given by the yellow cover. Evaluation of the autocorrelation
matrix of the bilinear system should be adjusted accordingly.
For example, the covariance of two supply functions is [20,
eq. (29)], i.e., Cov(ωs,i(k), ωs,j(k)) = E(ωs,i(k)ωs,j(k))−

E(ωs,i(k))E(ωs,j(k)), i �= j, which is now nontrivial due to
the spatially correlated assumption of the supply functions.
For the purpose of simulation of traffic dynamics, it can be
achieved by solving the recursive equations using a computer
program. Therefore, we are not going to dwell upon all of the
analytical equations in detail due to limited space. Interested
readers can refer to [35] for detailed derivation of mean and
variance equations of traffic dynamics incorporating the spatial
correlations of supply functions with application to optimal and
robust strategies for freeway traffic management under demand
and supply uncertainties.

III. BEST LINEAR PREDICTOR AND FORECASTING OF

FLOW PROFILES AND SUPPLY FUNCTIONS

The accuracy of prediction heavily depends on the similarity
between the historical data and the current trend of the traffic
flow when we apply the original SCTM to predict traffic state.
Prediction may fail when the traffic network is suffering from
abnormal traffic conditions (see, e.g., the empirical study in
Section V). Prediction accuracy would increase by incorporat-
ing the spatial and temporal correlations of traffic flow into
the SCTM. To extend the SCTM for traffic state prediction,
we may adopt a certain prediction algorithm to forecast the
inflow/outflow profiles and supply functions. Here, the MND-
based best linear predictor [26] is utilized to accomplish this
objective.

Take the prediction of a flow profile at a given location as an
example, we assume that the dynamic statistical flow profiles
are normally distributed. The flow profile vector conditioned
on the current measurement can be forecasted by the following
best linear predictor:

E(qf |qm) = E(q̂f ) + sq̂f,mΣ−1
q̂m

(qm − E(q̂m)) (14)

where qf = col(q(k + 1), . . . , q(k + n)) denotes the extended
flow vector to be forecasted for the coming predicting horizon,
and q̂f is the corresponding historical data during the same
period, with E(q̂f ) denoting the mean value of q̂f , whereas
qm = col(q((k − l + 1)), . . . , q(k)) is the measured flow vec-
tor for the current time period. sq̂f,m = (si,j)n×l denotes the
covariance matrix between qf and qm with

si,j = Cov (q̂f (i), q̂m(j)) = Cov (q̂(k + i), q̂(k − l + j))

i = 1, . . . , n; j = 1, . . . , l, and Σ−1
q̂m

is the generalized inverse
of the covariance matrix of q̂m with Σq̂m = (σi,j)l×l, and

σi,j=Cov (q̂m(i), q̂m(j))=Cov (q̂(k − l + i), q̂(k − l + j))

i, j = 1, . . . , l. The covariance matrix of the flow vector to be
predicted can be evaluated as

Cov(qf |qm) = Cov(q̂f )− sq̂f,mΣ−1
q̂m

sTq̂f,m . (15)

The prediction of supply functions conditioned on the current
observation can be also predicted by the same algorithm, i.e.,

E(δf |δm) = E(δ̂f ) + sδ̂f,mΣ−1

δ̂m

(
δm − E(δ̂m)

)
(16)
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Fig. 4. Mechanism of the best linear predictor.

where E(δf |δm) is the mean value of parameter δf given the
current detection of δm, and sδ̂f,m and Σδ̂m

are defined as those
in (14). Similarly, the prediction of the covariance matrix can
be defined as

Cov(δf |δm) = Cov(δ̂f )− sδ̂f,mΣ−1

δ̂m
sT
δ̂f,m

. (17)

The mechanism of the best linear predictor is shown in Fig. 4.
We utilize the difference between the historical mean and
current measurement of the flow profile (we will refer to this
as “error”) to correct the prediction. Ideally, if this error is
zero, the predicted flow profile “is equal to” the historical flow
profile, or no adjustment is made. Otherwise, we adjust the
prediction by the error weighted by the covariance matrices
(or their inverses) if the error is not zero. The best linear
predictor can forecast the flow profiles and supply functions by
considering their historical statistics and the real-time detection.
This method avoids time-consuming approaches such as data
mining in database (e.g., k-NN algorithm). Thus, it is efficient.
Adopting time-dependent supply functions instead of the fixed
parameters renders the prediction of traffic state more reliable.

Remark 3.1: The linear predictor adopted here is based on
the experience of California Partners for Advanced Transporta-
tion Technology (see, e.g., [6]). The reason is that occupancies
and volumes obtained from detectors at nearby locations are
highly correlated. Therefore, measurements from one location
can be used to estimate quantities at other locations, and a more
accurate estimate can be formed if all the neighboring detectors
are used in the estimation. As deemed by Chen et al. in [6],
“The high correlation among neighboring measurements means
that linear regression is a good way to predict one from the
other. It is also easy to implement and fast to run.”

IV. FRAMEWORK OF ONLINE TRAFFIC STATE PREDICTION

Recognizing the fact that measurement systems always suffer
from inherent bad detection, errors, and communication delays,
it may not be possible for us to implement a traffic simulator
in real time. This may be overcome by using this rolling
horizon approach, as shown in Fig. 5. The measure data are not
directly used by the simulator, e.g., the SCTM in this paper.
On the other hand, it is processed by a predictor/filter, e.g.,
data filtering (imputation of bad detections) and the prediction
of boundary variables and supply functions, as discussed in
the previous sections. The filtered data and predicted boundary
variables and supply functions are stored in a repository of

Fig. 5. Framework of the SCTM-based traffic prediction with rolling horizon.

road networks, which is a database. The simulator fetches data
directly from this repository to conduct real-time traffic state
estimation prediction.

The forecasting framework utilizes the rolling horizon ap-
proach, which is a concept that is widely used in online pre-
dictions. In this rolling horizon approach, traffic density and
journey time are predicted cycle by cycle with predefined
prediction horizon.2 Every two neighboring horizons are dif-
ferentiated by repredicting horizon, which is generally shorter
than predicting horizon, as shown in Fig. 5. The rolling horizon
approach can be interpreted as, for example, the route guidance
in an ATIS, under this model, the route guidance is periodically
generated and evaluated for a given time horizon (or the pre-
diction horizon, e.g., 45 min) based on the latest information
available. However, 45 min may be too long for us to trust
the prediction (or the prediction may not reflect the current
traffic state). On the other hand, the measurement systems
keep detecting the real-time traffic state, e.g., the Performance
Measurement System (PeMS) can provide real-time traffic in-
formation every 30 s and aggregate traffic state every 5 min.
We would like to use this information, e.g., the 5-min aggregate
data, to adjust the prediction, which has been discussed in the
previous sections. Therefore, the current guidance until the next
guidance update (e.g., 5 min) is actually implemented. Travel-
ers may update their route choices according to the guidance
updates. We call this interval of 5 min as the rolling horizon
step size.3 A detailed flowchart implementation of the proposed
traffic state prediction framework is shown in Fig. 6.

V. EMPIRICAL STUDY: TRAFFIC STATE PREDICTION

ON A SHORT SEGMENT OF I210-W

In this empirical study, we will validate the proposed traffic
state prediction framework on the test site adopted in [20], i.e.,

2This is also known as rolling horizon length, which is the time period for
which prediction takes place. This length is a function of the maximum trip
length. A rolling horizon is usually divided into short time intervals, e.g., rolling
horizon step size that specifies how often guidance is renewed.

3This step size may be determined based on the level of variation in traffic
conditions over time (e.g., a longer step size can be used if traffic conditions
do not change very much), the resolution of the measurement system, timing of
incidents, and available computational resources.
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Fig. 6. Flowchart of traffic state prediction.

Fig. 7. Map of the test site (source: Google map).

a 2-mi segment of the Interstate 210 Freeway near Los Angeles,
CA, USA.

A. Test Site Description and Model Parameter Calibration

A segment of the Interstate 210 West bound, which is approx-
imately 2 mi in length, is chosen in this case study, as shown in
Fig. 7. This short segment, which is located in Monrovia, CA,

Fig. 8. Section of I210-W divided into four cells and its detector
configuration.

TABLE I
SIMULATION SETTINGS

USA, stretches from S Myrtle Ave (A) through W. Huntington
Dr (B) to N Santa Anita Ave (C) with two on-ramps and two
off-ramps. This segment of the freeway is chosen here for the
following reasons.

1) The high level of recurrent congestion within the section
can be observed in the early morning period (6 A.M.–
10 A.M.).

2) The segment possesses necessary infrastructure and traf-
fic detectors embedded in the on-ramps and mainline
lanes for data collection.

This section is instrumented with single-loop inductance
detectors, which are embedded in the pavement along the main-
line, high-occupancy vehicle lane, on-ramps, and off-ramps.
Each loop detector provides raw data such as traffic volume
(veh/time-step) and occupancy (%) for the corresponding lane
for 30 s, where, in this empirical study, the first item is
conversed to general (for all lanes) traffic flow rate (veh/h),
and the second item becomes general densities (veh/mi) via
dividing the occupancy by g-factor (ft/veh), which is the ef-
fective vehicle length. For the convenience of analyzing the
prediction of boundary variables and supply functions, we
present a schematic representation of the freeway segment
and its detector configuration in Fig. 8. Boundary variables
of this freeway segment, i.e., qu, r1, f1, qo, r2, and f2, are
predicted using the best linear predictor. Here, we pretend that
the detector in the middle, i.e., qm, is missing (i.e., we do not
use it in the simulation) for validation of the performance of the
proposed method.

Traffic flow data of 7 h (4:00 A.M.–11:00 A.M.) collected
on Tuesday, Wednesday, and Thursday in March and April of
2008 and 2009 provided by the PeMS are used in this test
to calculate spatial and temporal correlations of the related
traffic characteristics. Traffic data collected on the morning of
March 3, 2011 (normal scenario) and March 8, 2011 (abnormal
scenario) are selected to test the performance of the proposed
framework under different traffic scenarios. In this empirical
study, the spatial–temporal correlations are calibrated using
the methods depicted in Section V-B. Basic configurations of
the simulation are outlined in Table I. Predicting the horizon
length is assigned to be 30 min. Rolling horizon step size,
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i.e., repredicting horizon, is 5 min, which can be adjusted
according to the accuracy requirement and real-time measured
data resolution.

B. Spatial–Temporal Correlation
Phenomena: Data Preparation

Spatial–temporal correlations can be utilized to predict short-
term traffic state. Here, we briefly introduce the mathematical
definitions of the correlations utilized in this empirical study.
Temporal covariance and correlation coefficient of q(k) be-
tween two adjacent time steps k and k − z are defined as

Covtm (q(k), q(k − z))

=

∑N
i=1 (qi(k)− q̄(k)) (qi(k − z)− q̄(k − z))

N − 1
(18)

γtm (q(k), q(k − z))

=
Covtm (q(k), q(k − z))

sq(k)sq(k−z)
, z = 1, 2, . . . , le, le ≤ k − 1

(19)

where qi(k) is the value of the detected flow during interval
k on the ith day; z is a positive integer that is less than or
equal to ls, which is a predefined bound (also an integer) for the
calculation; and sq(k) denotes the standard deviation of detected
flow q(k) for N sample days.

Temporal correlation of the parameters of a fundamental
diagram (or supply functions) for a given location can be also
similarly analyzed, i.e.,

Covtm (δ(kp), δ(kp−lp))

=

∑N
i=1

(
δi(kp)−δ̄(kp)

) (
δi(kp−lp)−δ̄(kp−lp)

)
N−1

(20)

γtm (δ(kp), δ(kp−lp))

=
Covtm (δ(kp), δ(kp−lp))

sδ(kp)sδ(kp−lp)
, lp=1, 2, . . . , lp,ε, lp,ε<kp

(21)

where δi(kp) is a certain parameter calibrated with data de-
tected during time period kp (e.g., half an hour) on the ith day.
δ̄(kp) is the mean of δ(kp) and sδ(kp) is the corresponding
standard deviation over N days.

The spatial covariance and correlation coefficient of adjacent
supply functions during time interval kp are thus defined as

Covsp (δm(kp), δn(kp))

=

∑N
i=1

(
δm,i(kp)− δ̄m(kp)

) (
δn,i(kp)− δ̄n(kp)

)
N − 1

(22)

γsp (δm(kp), δn(kp))

=
Covsp (δm(kp), δn(kp))

sδm(kp)sδn(kp)
(23)

where the notations in (22) and (23) are similar with the
notations in (20) and (21) but for the differentiation of δm(kp)
and δn(kp) denoted by m and n, which represent the adjacent
locations. Spatial correlation of densities can be evaluated as

Covsp (ρm(k), ρn(k))

=

∑N
i=1 (ρm,i(k)− ρ̄m(k)) (ρn,i(k)− ρ̄n(k))

N − 1
(24)

γsp (ρm(k), ρn(k))

=
Covsp (ρm(k), ρn(k))

sρm(k)sρn(k)
(25)

where ρm,i(k) is the traffic density detected at location m dur-
ing time interval k on the ith day, ρ̄m(k) is the mean density
over N days, and sρm(k) is the corresponding standard
deviation.4

C. Traffic State Prediction Under Normal Traffic Condition

We first test the proposed algorithm for traffic state prediction
under normal traffic condition. By normal traffic condition, we
mean the traffic pattern under consideration is similar to the
statistics of the historical data, as shown in Fig. 9. Note that due
to the rolling horizon architecture, only the first 5 min traffic
state of each prediction horizon is shown in the figure as others
are overlapped by their coming prediction horizons.

As shown in Fig. 9, the predicted inflow function to the
first cell is close to the measured one at the first beginning,
i.e., the morning free-flow period. When the traffic condition
turned to congested, demand from the upstream may not be
received by the first cell. Therefore, we need to predict the
inflow profile by considering the receiving function of the first
cell. As demonstrated in the figure, the mean value of the
prediction of the inflow profile is close to the measurement
(except for the “unexpected” congestion period caused by a
moving bottleneck, which will be discussed in detail later) that
reflects satisfactory performance of the best linear predictor.
Similarly, the outflow profile from the downstream boundary
of the segment is predicted, which is not shown in the figure
due to the space limit.

These flow profiles are loaded into the SCTM for traffic state
prediction. Results are shown in Fig. 9 against the measured
densities of the day and historical mean of all the sample days
(which is not utilized in the simulation). As reflected by the
figure, the prediction captures the trend of traffic dynamics
rather than the historical mean. The overall mean absolute
percentage error (MAPE) of all prediction horizons is around
14%, whereas the MAPE for all the repredicting horizons (i.e.,
the first 5 min of each predicting horizon, as shown in Fig. 9) is
about 10.8% compared with the measurement from the middle
detector. Most of the measured traffic data (except some points
caused by the moving bottleneck) lie in the 99.7% confidence
interval (i.e., three standard deviations from the mean). This

4More details of the analysis on spatial–temporal correlations is in the online
electronic companion to this paper, which is available at http://sites.google.
com/site/luciatlpan767/home/predictiontmspcrieee.
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Fig. 9. Predicted flow and density against the measurements.

Fig. 10. Comparison of the detected densities.

example proves that the linear best predictor in conjunction
with the SCTM by considering the spatial–temporal correla-
tions is a good way for prediction in the case, which is also
due to the fact that there is high correlation among neighbor-
ing measurements, as indicated in Remark 3.1. The proposed
method is also easy to implement and fast to run. Nevertheless,
we would like to point out some drawbacks of the proposed
framework. Note that there is congestion near 9:00 A.M. that
is not captured by the algorithm. Comparing the measured cell
densities shown in Fig. 10, we find that this congestion was
formed within the freeway segment and spilled back to the
upstream cells since the detector at the downstream did not
observe this congestion while the detectors at the upstream and
the middle did observe it and with a time lag. Moreover, the
detector at the downstream admitted an abrupt decrease in both
flow and density around 9:00 A.M. and returned to the normal
level in a short time. In the meantime, the congestion observed
by the other detectors was dissolved. Therefore, we concluded
that this congestion was caused by the moving bottleneck.

As we do not use the data from the middle detector while
predicting the inflow and outflow profiles and because the
prediction of inflow/outflow profiles cannot be captured (due to
the fact that the observations are similar to the historical data)
as well as the fact that the supply functions do not significantly
change, the proposed algorithm cannot capture this congestion,
as indicated in Fig. 9. After the change in the upstream inflow
profile is identified by the predictor, modification of the pre-
dicted flow is made accordingly. However, this correction is
too late to benefit the traffic state prediction by the SCTM, as
shown in Fig. 9. This can be regarded as a drawback of this kind
of reactive traffic state prediction framework (which has been
reported in transportation literature), i.e., it requires sufficient
information to identify the change in traffic flow patterns and
to react to the change identified, which renders a certain time
lag. However, the algorithm fails to capture this congestion also
due to the fact that the CTM/SCTM framework cannot capture
the effects of the moving bottleneck. We have tried to tackle
these drawbacks of the proposed algorithm in two of our recent
works, i.e., [33] (on the reactive part) and [34] (on the moving
bottleneck part).

D. Traffic State Prediction Under Abnormal Traffic Condition

This section conducts an empirical study to validate the
prediction results under abnormal traffic conditions by intro-
ducing spatial and temporal correlations to the short-term traffic
state forecasting framework, as summarized in Fig. 5. On the
morning of March 8, 2011, there was an abnormal traffic
condition due to a certain incident, as shown in Fig. 11(a) and
(b). As we can observe, the detected inflow/outflow profiles
and the density of the day, compared with the distribution
of flows and density collected over 54 sample days, admitted
sudden declines (increase in the density) at around 6:00 A.M.
Note also that the outflow of the segment admitted a decline

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on October 29,2020 at 08:08:45 UTC from IEEE Xplore.  Restrictions apply. 



PAN et al.: SHORT-TERM TRAFFIC STATE PREDICTION BASED ON TEMPORAL–SPATIAL CORRELATION 1251

Fig. 11. Predicted flow and density against the measurements.

before the inflow did, which implies that this decline was due
to congestion spill-back. Clearly, the detected traffic flows and
densities thereafter were so different from the mean flows and
detected densities of the 54 sample days. If we just directly
input the statistical flow profiles of the 54 sample days to a
traffic simulator for short-term prediction, the results may be
poor in terms of accuracy due to the great difference of the
flow and density profiles. Fig. 11(a) and (b) indicates that
the prediction of inflow/outflow profiles is accurate, except for
the time steps near the abrupt change. To see more details of the
prediction mechanism, we depict the predicted inflow profiles
for three rolling horizon steps near the abrupt changes in the
flow profile. As shown in Fig. 12, in the first rolling horizon
step, the inflow prediction is far from the actual detections
(Cycle A). This is because the abnormal traffic condition occurs
after the prediction started at 5:55 A.M. The prediction cannot
make use of the detected flow pattern until the next rolling
horizon step (when the real-time measurement is adopted to
adjust the prediction), i.e., 5 min later. Huge errors between
the historical flow patterns and the real-time measurements are
identified by the predictor. The predictor then adjusts the pre-
diction when the next rolling horizon step begins. However, the
decrease in predicted inflow is still unsatisfactory throughout
Cycle B. The prediction will keep on adjusting if the error
between the historical mean and the current measurement is
not zero. Cycle C (6:05 A.M.–6:35 A.M.) demonstrates this
adjustment by the best linear predictor by considering temporal
correlations. The inflow profile prediction becomes close to the
detected one after two adjustments.

Fig. 12. Predicted inflow profile adjustment process.

It is of course that the level of improvement depends on the
relationship between the characteristics of traffic flow and the
rolling horizon step size (which depends on the resolution of
real-time measurement and the preference of the traffic man-
ager). One may use smaller rolling horizon step size (repredict-
ing horizon) to accelerate the rate at which the prediction adapts
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Fig. 13. Predicted traffic density adjustment process.

to the real-time feed in traffic conditions, e.g., from 5 to 1 min
(with a minimum frequency determined by the resolution of the
measurement system, e.g., 30 s in the PeMS). However, this is
perhaps not practical due to the sophisticated data processing,
computation effort, and deployment constraints in ATIS and
ATMS applications. Forecasted traffic densities of these three
prediction horizons are depicted accordingly. The fundamental
diagram has no significant change due to a normal weather
condition and the fact that the incident does not occur on the
underlying segment (as we have mentioned that the change in
the flow pattern is due to congestion spill-back).

Predicted traffic density is plotted against the measurement
from the middle detector for these three prediction horizons
in Fig. 13. In Cycle A, the prediction underestimates traffic
densities significantly. This is due to the fact that the abnor-
mal scenario is initiated at this step, the prediction is mainly
provided by the statistics of historical data. The forecasting
algorithm need to wait until the real-time measurement is
loaded into the predictor in the coming step to realize the
error between the prediction and the detection, which then
makes corrections on flow and/or supply functions forecasting.
Based on the corrected flow and/or supply functions from the
best linear predictor, the forecasting traffic density is adjusted
by the SCTM, as demonstrated in Fig. 13. However, there is
still significant error, which indicates that the adjustment is
not successful. Therefore, the algorithm keeps on adjusting
the predicted inflow/outflow flows (or boundary conditions),
and the SCTM keeps on tuning the predicted traffic states. In
Cycle C, the prediction almost coincides with the measurement,
as shown in Fig. 13. Samples of prediction results for the
horizons with stationary traffic conditions, e.g., free flowing
and congested conditions, are shown in Fig. 14, which validate
that good performance can be achieved by the proposed traffic
prediction framework regardless of the great difference between
historical data and measured data. This is because the tuning

Fig. 14. Samples of prediction horizons.

of the predictor with respect to the difference between the
historical data and the measurement also tends to stationary
some time after the traffic state turned to stationary.

Fig. 11(c) shows the effective traffic density prediction of all
rolling horizon steps with the same legends as those in Fig. 9.
A time lag effect can be observed in Fig. 11(c), which is due
to the reactive nature of the algorithm. The time lag can be
smaller by choosing smaller repredicting horizon subject to the
resolution of measured traffic data, as previously discussed. For
this special weekday with a long-lasting traffic incident during
the morning rush hour, the prediction can capture the trend
of traffic state evolution in a satisfactory manner. The overall
MAPE of all prediction horizons is around 16.2%, whereas
the MAPE for all repredicting horizons (i.e., the first 5 min of
each predicting horizon, as shown in Fig. 9) is about 14.8%
compared with the measurement from the middle detector.

Finally, we would like to point out that the choice of l in
(14) is determined by balancing the accuracy of prediction and
computational time. We do not have sound theoretical guidance
on how to choose reasonable l. Pan [16] provided some practi-
cal investigation on this issue by empirical studies based on the
criterion of MAPE variation with different values of l on the
condition of n = 6, i.e., 30 min predicting horizon. Generally
speaking, a proper choice of the length of measurement for
prediction should be close to the prediction horizon, i.e., l ≈ n.
That is to say, a reasonable length of observation of real-time
trend of traffic flow will benefit the prediction. Choosing a small
value may not provide sufficient information for the correction
of prediction. By contrast, choosing vary large l, i.e., placing
too much consideration on the period far away from current
time, may decrease the sensitivity of prediction. Additionally,
computational time increases as l increases.

VI. CONCLUSION AND FUTURE WORKS

This paper has developed an online framework by extending
the SCTM to consider the spatial–temporal correlations of
uncertain flow profiles and supply functions for short-term traf-
fic state prediction. Traffic inflow/outflow profiles and supply
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functions, conditioned on the current observation, were pre-
dicted via the MND-based best linear predictor given the statis-
tical correlations of boundary variables and supply functions,
as analyzed from the historical traffic data. The predictor was
able to adjust the prediction by capturing the error between the
real-time measurements and the historical mean. The predicted
boundary variables and supply were taken as inputs to the
SCTM to perform short-term traffic state prediction. Mean-
while, the key processes of the SCTM, i.e., the evaluation of
probabilities and propagation of traffic states, were improved
by considering the spatial correlations of supply and traffic cell
densities. For real-time or online application, the prediction was
conducted in a rolling horizon manner. The extended SCTM
model and the prediction algorithm were tested with empirical
data from the PeMS database.

As validated by empirical studies, the proposed method
performs well under different scenarios. Empirical results also
revealed the potential application of the proposed method for
traffic state prediction under abnormal traffic conditions, e.g.,
incidents and adverse weather conditions. However, the pro-
posed algorithm suffers from the time lag effect due to its reac-
tive nature and cannot capture the moving-bottleneck effect due
to the limitation of the CTM/SCTM framework. Future efforts
should be dedicated to overcoming these drawbacks. Our next
step is to tackle these challenges by extending two of our recent
works, i.e., [33] and [34], which intend to identify anoma-
lies and the moving-bottleneck effect caused by lane-changing
maneuvers. Another interesting aspect is to incorporate traffic
state prediction into the design of freeway traffic management
strategies to support real-time applications as outlined in [35].
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