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This paper proposes a framework for evaluating the distributions of stochastic dynamic
link travel time and journey time as well as assessing the journey time reliability. Due to
the stochastic nature of the flow profiles, the paper devises a sampling process to estimate
the probability mass function (PMF) of the link travel time. This sampling process defines a
likelihood concept that measures the probability of the difference between the cumulative
stochastic link inflow and outflow profiles to be less than or equal to a prescribed bound.
Based on this likelihood measure, the probability mass function (PMF) of the link travel
time is evaluated over an appropriate sampling interval. The PMF of the journey time is
then evaluated by extending the deterministic nested delay operator to a stochastic version
which is defined as a series of ‘‘nested’’ conditional probabilities of the link travel time
PMFs along the route. This paper also proposes a method to fit the PMF of the journey time
to a class of statistical distribution to determine its skewness, which is useful in the anal-
ysis of journey time reliability. The paper then analyzes journey time reliability via the
properties of dynamic travel time distributions such as confidence intervals and shape
parameters. The proposed algorithm is applied to estimate the stochastic journey time
on a freeway corridor from the stochastic cumulative inflow and outflow profiles generated
from the stochastic cell transmission model. This methodology is validated with two
empirical studies: (i) estimations of journey time distribution and reliability analysis for
one short freeway segment in California during a specific time period and (ii) the effects
of traffic incidents on journey time reliability for a long expressway corridor of Hanshin
expressway (between Osaka and Kobe) in Japan.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Traffic networks are fragile to both demand and supply uncertainties, especially under incident scenarios and adverse
weather conditions. As transportation network is a backbone of a city, the disruption or failure of the transport system
may jeopardize the security and welfare of the population. For these reasons, travel time reliability (TTR) has been widely
recognized as one of the key performance indicators of transportation networks (Bell, 1999, 2000; Bell and Cassir, 2000; Cas-
sir et al., 2001). Despite its importance, there is no uniform definition of TTR in the sense that what should be precisely en-
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tailed by TTR or how it should be made operational. Different indicators for evaluating transport network performance
against uncertainties have been proposed ranging from connectivity reliability (Asakura et al., 2003), network vulnerability
(Berdica, 2002; Taylor et al., 2006), capacity reliability (Chen et al., 2002; Sumalee and Kurauchi, 2006), travel time reliability
(Asakura and Kashiwadani, 1991), total travel time reliability (Clark and Watling, 2005), to demand satisfaction measure
(Heydecker et al., 2007). Different indices are appropriate for different purposes and circumstances. For instance, the connec-
tivity reliability and network vulnerability were mainly devised for an extreme condition of the network, e.g. after disaster or
emergency evacuation. On the other hand, the journey time reliability deals with recurrent performance of the network.

Journey time reliability, which describes the degree of stability of journey time, plays an important role in travelers’ route
choice and departure time choice behavior. The variation of journey time is caused by both demand uncertainties and sto-
chastic capacities (e.g. due to weather, incident, or road-maintenance). Existing studies on travel time reliability primarily
focus on devising indices to quantify the level of journey time uncertainty (or reliability) in a static network model (Cassir
et al., 2001; Bell, 2000; Bell and Cassir, 2002; Lo et al., 2006; Clark and Watling, 2005). What these measures have in common
is that the longer-tailed the travel time distribution is on a particular time-of-day (TOD)/day-of-the-week (DOW), the more
unreliable travel time on a freeway network or corridor (van Lint et al., 2008). Furthermore, the propagation of delay and
uncertainty through the traffic network dynamically and spatially can be naturally observed. The level of travel time reliabil-
ity and uncertainty, hence, should be assessed dynamically. Nevertheless, recent research suggests that even both the mean
and variance of the travel time are obtained, still they should be used and interpreted with some reservations when telling
the travel time unreliability, since they only account for a part of the costs of unreliability (van Lint et al., 2008; Cassir et al.,
2001). The skewness of the travel time distribution plays an important role in travel time unreliability. In a word, a central
element of the dynamic journey time reliability is the evaluation of dynamic travel time distribution.

Much research work has been dedicated recently to the study of the way travelers react to the shape of the the distribu-
tion of stochastic dynamic link travel time (DDTT) (see e.g. Bates et al., 2001; Pattanamekar et al., 2003; Chang et al., 2005;
Huang and Gao, 2012). However, less attention has been paid to developing tools for estimating the DDTT itself (Sun et al.,
2008). In the context of optimal routing, most of the algorithms consider the expected value of link travel-time as a sufficient
statistic for the problem and produce least expected travel-time paths, i.e. travelers are assumed to choose their routes with
minimum expected costs (Fu and Rilett, 1998; Miller-Hooks and Mahmassani, 2000; Huang and Gao, 2012). Further more,
these papers presumed fully knowledge on the distributions of link travel times. The route travel times were then obtained
recursively using the nested delay operator under the umbrella of time-dependent network. Therefore, it is instructive and
important to develop sound evaluation methods for DDTT. Nevertheless, constructing the distribution of dynamic route jour-
ney time from the distributions of link travel times is a difficult task that enforces several assumptions in transportation lit-
erature (Miller-Hooks and Mahmassani, 2000), e.g. independent link travel times in Jula et al. (2008).

Conventionally, there are several methods to calculate link travel (or journey) time: evaluation from advanced surveil-
lance systems: video image processing, automatic vehicle identification, smart phone/GPS tracking, probe vehicles using
traffic flow theory and/or statistical methods (see e.g. Petty et al., 1998; Coifman, 2002; Dion and Rakha, 2006; Haghani
et al., 2010; Herrera et al., 2010; Sumalee and Wang, in press), dynamic traffic assignment models (see e.g. Peeta and
Ziliaskopoulos, 2001; Wen, 2008), statistical and computational intelligence (CI) based approaches (see e.g. Wu et al.,
2004; van Lint et al., 2005; van Lint, 2008; Jula et al., 2008; Karlaftis and Vlahogianni, 2011), and dynamic traffic flow
propagation based matching algorithms (see e.g. Lo and Szeto, 2002; Carey and Ge, 2012). All these methods can be re-
garded as fitting different types of models to observed data at individual sites. In this sense, major techniques for (short-
term) travel-time evaluation are of three major categories in transportation literature: parametric methods (e.g. linear
regression, time series models, dynamic traffic assignment models, Kalman filtering techniques), nonparametric statistical
methods (e.g. neural network models, simulation models, Bayesian models, support vector regression), and hybrid inte-
gration methods. The statistical approaches have more solid and widely accepted mathematical foundations than the
CI based approaches (Karlaftis and Vlahogianni, 2011). On the other hand, the statistical approaches frequently fail when
dealing with complex and highly nonlinear data and suffer from the curse of dimensionality. As highlighted by Karlaftis
and Vlahogianni (2011), the CI based approaches, combining techniques from machine learning, adaptation, evolution and
fuzzy logic to create intelligent models to emerge unstructured data by following some performance indexes, may out-
perform the statistical approaches. However, we may point out that abnormal traffic patterns caused by non-recurrent
congestion or incidents may deteriorate the performance of these models (Fei et al., 2011). Some of these methods do
not work well under demand and supply uncertainties. The DTA based approaches would suffer from the disadvantages
of the accuracy of network loading models and scalability. Nevertheless, most of these methods provide mean and var-
iance of the dynamic travel time only, which may not be sufficient for a broad range of applications. Only few works have
been dedicated to evaluate stochastic travel time distributions analytically (Kharoufeh and Gautam, 2004). The approach
proposed by Kharoufeh and Gautam (2004) implicitly captures the time dependence of stochastic vehicle speed in terms
of partial differential equations. When the environmental process is assumed to be a continuous-time Markov chain
(CTMC), an explicit matrix equation for the stochastic dynamic link travel time distribution can be obtained. Although
the technique presented in Kharoufeh and Gautam (2004) provides an analytical result for the link travel-time distribu-
tion, the proposed approach depends on some ingenuities in determining the appropriate selection of transition rates for
the CTMC and the vehicle speed function. This renders that the proposed approach cannot deduce general explicit expres-
sions for the moments of the random travel time. Nevertheless, this method is very computationally demanding and is
not ready to be extended to capture route travel (or journal) time distributions.
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Fig. 1. The relationship of the segment used in SCTM and the link used in travel time estimation.
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For the deterministic dynamic flow model, to evaluate the travel time via the traffic flow propagation, the principle of
first-in-first-out (FIFO) of traffic flows is utilized, i.e. comparing the cumulative inflow and cumulative outflow profiles in
which the exit time for traffic entering the link at time t is the time when the cumulative outflow of that link is equal to
the cumulative inflow up to time t. This paper extends the FIFO concept to evaluate travel time distribution based on the
stochastic cumulative inflow and outflow curves. Generally speaking, any stochastic cumulative inflow and outflow can
be utilized as inputs to the proposed algorithm to evaluate stochastic travel time distribution as long as the FIFO principle
is satisfied in the sense of ‘‘almost sure’’. In particular, we adopt the stochastic cell transmission model (SCTM) proposed by
Sumalee et al. (2011) as network loading model to generate these flow profiles from the traffic data collected by point sen-
sors so as to capture the randomness in both demand and supply sides. To evaluate the journey time, a long freeway corri-
dor1 is divided into several links such that the on-ramps are located at the first cells of the links while the off-ramps are located
at the last cells. For each of the entry time interval the algorithm will evaluate the likelihood of the link travel time by calcu-
lating the probability of the mapping error, i.e. the difference between the stochastic cumulative inflow at the entry time and
the stochastic cumulative outflow at each of the sampled exit times, to be less than a prescribed bound. Thus, for a given entry
time the probability of each of the future time interval to be the exit time of this entry time can be calculated. The probability
mass function (PMF) of the exit time for each entry time can then be evaluated (Miller-Hooks and Mahmassani, 2000). The jour-
ney time can be evaluated by extending the nested delay operator to the stochastic environment by using the Bayes’ rule. Dis-
tribution fitting technique will be applied to capture the skewness and distribution of dynamic journey time. Travel time
reliability will then be evaluated by examining different reliability indexes using the distribution of dynamic journey time
obtained.

This paper is structured into five further sections. The next section provides necessary preliminaries on the dynamic tra-
vel time estimation from the exit-flow model and a brief introduction of the SCTM. Then, the third section presents the pro-
posed algorithm for estimating the PMF of link exit time from the dynamic stochastic flow outputs of the SCTM. The fourth
section explains the derivation of the stochastic path journey time from the PMF of link exit time and introduces the buffer-
time index for reliability evaluation. The proposed algorithm is then tested with two empirical case studies in Section 5. The
first case study is a short freeway segment using the historical data of a month from the performance measurement system
(PeMS) database. The second case study is a long Japanese expressway corridor (12 km). The final section then concludes the
paper.

2. Preliminaries

2.1. Deterministic link travel time estimation from an exit-flow model and journey time estimation

Consider a path on a long freeway corridor as depicted in Fig. 1. Firstly, the path is divided into several links by the on-
ramps and the off-ramps along the corridor such as link lm, and as illustrated in Fig. 1a, the path is partitioned into Nl links.
Segment is a concept used in SCTM, with each segment consisting of several cells and having the neighbor detectors as its
boundaries. The same freeway corridor represented by Ns segments is shown as Fig. 1b. With these concepts, we introduce
the link travel time evaluation under a macroscopic continuous-time deterministic dynamic traffic flow model. The flow
propagation equation for link lm can be expressed as follows:
1 A p
extensi
Clm
in ðtÞ ¼ Clm

outðslm ðtÞÞ; ð1Þ
ath concerned in this paper mainly refers to a freeway corridor. However, the proposed method is not limited to freeways, see e.g. Zhong (2011) for the
on to evaluate travel time distribution for arterials.
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Fig. 2. Stochastic inflow demand and fundamental diagram.
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where slm ðtÞ is the exit time from lm for a vehicle that enters this link at time t,2 and Clm
in ðtÞ and Clm

outðslm ðtÞÞ are the cumulative
inflow and outflow volumes at the entry and exit times of this link, respectively. The time–flow consistency equation in (1) is
applicable on condition that the FIFO principle holds. The deterministic link travel time blm ðtÞ can be defined ass
2 It is
not rigo
defined
wherein

3 For
blm ðtÞ ¼ slm ðtÞ � t: ð2Þ
The journey time of path p is then defined by the nested delay operator with exit time slm ðtÞ ð8lm 2 pÞ of all the links on
the path as:
gpðtÞ ¼ slNl
ð� � � slm ð� � � sl1 ðtÞÞÞ � t; ð3Þ
where the exit time from link m is the entry time to link m + 1.
2.2. The stochastic cell transmission model (SCTM)

We adopt the stochastic cell transmission model (SCTM) proposed by Sumalee et al. (2011) as the network loading model
to furnish the stochastic flow profiles for the evaluation of travel time distributions by extending (1). The SCTM considers
stochastic characteristics of the fundamental diagram (uncertain flow–density relationship) and admits the stochastic travel
demand as exogenous input as illustrated in Fig. 2. For the supply side, the means and variances of different parameters (i.e.
free-flow speed, jam-density, critical-density, and backward-wave speed) which govern the fundamental diagram are cali-
brated based on the statistics of the observed data (e.g. the grey dots in the right-hand side of Fig. 2) for each section
equipped with detectors. The SCTM defines the random inflows (uncertain demand) as well as random parameters of the
fundamental flow–density diagram (uncertain supply functions) as boundary variables. It accepts the means and variances
of the boundary variables as exogenous inputs, and then calculates the means and variances of the traffic densities, outflow
of the freeway segment and probabilities of its operational modes.3 as outputs based on the measured boundary conditions as
illustrated in Fig. 3 To be specific, at each simulation time step, the stochastic flow propagation between adjacent cells under
each mode can be determined by the flow–density relationship (see Sumalee et al. (2011) for details). Each of these stochastic
flow profiles is associated with a certain probability corresponding to an operational mode. The flow propagated from upstream
to downstream cell in the next time step is a mixture distribution of the stochastic flows of the operational modes. Detailed
discussion can be found in Sumalee et al. (2011) and is omitted here for brevity. For the purpose of calculating dynamic travel
time distribution, we need also to obtain the distributions of dynamic link inflow and outflow from the simulation outputs of
the SCTM as discussed in Sumalee et al. (2011).
important to recognize that this exit time definition is time-and-flow-driven, i.e. the exit time is related to both travelers and their entry time. It may be
rous with zero arrival or departure flow-rates if the exit time is regarded as time-driven only, e.g. travel time of link a at 8:00 am may be not well
if there is no entry flow to the link. A discussion on this ‘‘no flow’’ issue and its extension is discussed in Zhong (2011) for signal junction applications
flows can be zero due to signal effects.

a short freeway segment, the SCTM defines five operational modes with respect to different traffic conditions, location and movement of the wavefront.



Fig. 3. Block diagram representation of the stochastic cell transmission model.
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3. Evaluation of stochastic dynamic journey time

3.1. Probabilistic mass function and normalization of the link travel time

Since the cumulative inflow and outflow are both random processes, the FIFO principle based travel time estimation
method is not directly applicable.4 Nevertheless, the FIFO principle is extended here to estimate the probability of travel time
to be a certain value. For a given entry time, this extension estimates the probability of each of the future time interval to be the
exit time of this entry time. This probability is defined according to the likelihood that the difference between the cumulative
inflow and the cumulative outflow at a future time step is less than a prescribed bound. To apply this concept by incorporating
the outputs from the SCTM, we discretize the continuous time into small discrete time intervals. By the SCTM, the distributions
of inflow rate qlm

in ðkÞ and outflow rate qlm
outðkÞ of link lm can be obtained. Based on the distributions of inflow rate qlm

in ðkÞ and out-

flow rate qlm
outðkÞ of link lm, the corresponding cumulative inflow and outflow distributions can easily be evaluated.5 Assume

Clm
in ðkÞ ffi fCin Clm

in ðkÞ;rClm
in
ðkÞ

� �
, where fCin(�) denotes a certain statistical distribution, Clm

in ðkÞ denotes the mean value, and rClm
in
ðkÞ

denotes the standard deviation of the cumulative link inflow. Similarly, the cumulative link outflow is defined as

Clm
outðkÞ ffi fCout Clm

outðkÞ;rClm
out
ðkÞ

� �
. The probability of the time step k0 to be the exit time for vehicles entering the link at time k

(i.e. the entry time ET = k) can be written as: Pr Clm
in ðkÞ ¼ Clm

outðk
0Þ

� �
. However, this probability is not well defined. Thus, the like-

lihood for the time step k0 to be the exit time (or k0 � k to be travel time) for vehicles entering the link at time k is proposed as:
4 If a
In this p
that vf,iT
since m
probabi
roughly
such th
the FIFO

5 Not
rate du

6 In o
7 Plea
P0k0 jk ¼ Pr �e 6 Clm
outðk

0Þ � Clm
in ðkÞ 6 ejET ¼ k

� �
; ð4Þ
where e 2 R+ denotes a pre-defined positive small number.6 In the empirical studies, we will show that the travel time distri-
bution is robust (non-sensitive) to the choice of e.

To interpret the above likelihood, we define ekðk0Þ ¼ Clm
outðk

0Þ � Clm
in ðkÞ as the matching error which measures the difference

between the cumulative inflow and outflow distributions. Eq. (4) is then equivalent to P0k0 jk ¼ Prð�e 6 ekðk0Þ 6 ejET ¼ kÞ. We
can simplify the calculation of ek(k0) as:
ekðk0Þ ¼ Clm
outðk

0Þ � Clm
in ðkÞ ¼

Xk0�1

x¼1

qlm
outðxÞDt �

Xk�1

x¼1

qlm
in ðxÞDt ¼

Xk0�1

x¼k

qlm
outðxÞDt � �

Xk�1

x¼1

qlm
outðxÞ þ

Xk�1

x¼1

qlm
in ðxÞ

 !
Dt

¼
Xk0�1

x¼k

qlm
outðxÞDt �

XNClm

i¼1

qlm
i ðkÞs

lm
i ; ð5Þ
where Dt is the interval of the discretized time step, NClm is the number of cells on link lm;qlm
i ðkÞ is the density of the ith cell

on link lm at time k, and slm
i is the length of the cell. Note that slm

i and Dt are constants meanwhile the link outflow profile and
cell densities are normally distributed by assumption, the matching error is normally distributed.7 Thus, it is sufficient for us
to obtain the mean and variance of Eq. (5) so as to evaluate the probability defined by Eq. (4). The expectation of Eq. (5) is
macroscopic traffic flow model is adopted to simulate the traffic dynamics, the FIFO principle needs to be fulfilled by the underlying traffic flow model.
aper, SCTM is utilized as the network loading model. Under the deterministic CTM, the FIFO principle will be fulfilled if the cell length li is chosen such
s 6 li where vf,i is the free flow speed of cell i, and Ts is the simulation time increment. This condition cannot always be satisfied in the SCTM framework
athematically the free-flow speed vf,i can be anything along its distribution. Nevertheless, certain concept that is similar to the ‘‘almost sure (or with
lity one)’’ in stochastic analysis can be adopted to redefine this condition. The probabilistic version of the FIFO condition in the SCTM framework is
defined as Pr(vf,iTs 6 li) P v, where v is a positive real number which satisfies 1 � e < v < 1 for a small real number e. We may choose v very close to 1,

at Pr(vf,iTs 6 li) � 1, i.e. the event vf,iTs 6 li is almost sure. In the empirical studies, the cell lengths are defined according to this condition. In other word,
is well satisfied in the sense of ‘‘almost sure’’ in the SCTM formulation.

e that in Eq. (5), due to the discretization, cumulative flows at time step k are calculated up to k � 1. This implies that qlm
in ðkÞ is regarded as the inflow

ring the time interval [k, k + 1)Mt. The same logic is applied to the calculation of cumulative outflow.
ur empirical studies, if not else specified, the value e is 1 by default.
se see Appendix A.1 for details.



Fig. 4. An illustration of the sampling region.
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Eðekðk0ÞÞ ¼
Xk0�1

x¼k

Dt � E qlm
outðxÞ

� �
�
XNClm

i¼1

slm
i � E qlm

i ðkÞ
� �

: ð6Þ
If the above random variables are uncorrelated, we can obtained the variance of ek(k0) easily by the additive of indepen-
dent normal variables. However, the variance is not additive in general due to the correlation. Nevertheless, we can make use
of the covariance matrix8 of the corresponding vector (augmented by the above random variables) obtained from the SCTM to
proceed with the variance evaluation which is discussed in detail in Appendix A.1 of the paper. As it will be shown in the empir-
ical study, improvement contributed by incorporating the covariance matrix (i.e. considering the correlation) to dynamic travel
time distribution is not significant.

To evaluate the probability mass function (PMF) of the link travel time for an entry time k, it is necessary to evaluate the
probability in Eq. (4) against all possible exit time k0 > k. This is considered impractical and unnecessary (Miller-Hooks and
Mahmassani, 2000). The proposed method will only evaluate the probability defined by Eq. (4) against a certain interval of
the exit time, say [klb kub], which is defined by the lower-bound klb and upper-bound kub as:
klb ¼min k0 : min Clm
in ðkÞ � irClm

in
ðkÞ

� �
� Clm

outðk
0Þ þ jrClm

out
ðk0Þ

� ���� ���n o
;

kub ¼min k0 : min Clm
in ðkÞ þ irClm

in
ðkÞ

� �
� Clm

outðk
0Þ � jrClm

out
ðk0Þ

� ���� ���n o
;

ð7Þ
where i, j can be selected as small positive integers (non-integers are also acceptable) which can be adjusted such that there
is no overlapping between the two curves Clm

in ðkÞ � irClm
in
ðkÞ and Clm

outðk
0Þ þ jrClm

out
ðk0Þ (which in turn implies k0 > k), (see Fig. 4).9

In Section 5, a comparison of journey time results by assigning different values to i, j will be conducted. It is found that the algo-
rithm is robust to the choice of i, j.

Following the sampling technique described by Eqs. (4)–(7), a series of P0k0 jk, which describe the likelihood of k0 to be the
exit time index for entry time k (whereas the link travel time is defined as (k0 � k)Dt), can be obtained. As the summation of
the probabilities

Pkub
klb

P0k0 jk may not be equal to 1, the relative frequency is introduced to normalize the probabilities. For a
vehicle entering link lm at time k, the relative frequency Pk0 jk is defined as:
Pk0 jk ¼
P0k0 jkPkub
klb

P0k0 jk
; 8 k0 2 ½klb; kub�: ð8Þ
From the normalized probabilities, the PMF of the link exit time for vehicles entering at time index k is constructed as
shown in Fig. 5. Each bar on the upper plot represents Pk0 jk, and the lower plot denotes the corresponding cumulative mass
function (CMF).

3.2. Probabilistic mass function of path journey time

Consider a path from link l1 to link lNl as depicted in Fig. 6. To trace the path travel time distribution for vehicles entering
the origin at time step k, we extend the nested delay operator to the stochastic case. The relative frequency of time-step sNl to
be the exit time from the destination of the path for vehicles entering the origin at time step k is derived as follows:
is a random vector with n components, the matrix Var(X) = E((X � E(X))(X � E(X))T) is the covariance matrix.
ailed analysis on the choice of i, j is given in Appendix A.2. In the empirical studies, if not specified, i, j are set to be 3.



Fig. 5. The PMF and corresponding CMF respect to exit time index for entry time index k.

Fig. 6. Nested delay operator for a path with Nl links.
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P1;nestðs1jkÞ ¼ P1ðs1jkÞ; s1 2 kl1
lb; k

l1
ub

h i
;

P2;nestðs2jkÞ ¼
Xkl1

ub

s1¼k
l1
lb

P2ðs2js1ÞP1;nestðs1jkÞ; s2 2 kl1
lb

� �l2

lb
; kl1

ub

� �l2

ub

� �
;

..

.

Pm;nestðsmjkÞ ¼
Xk

l1
ub

� �
���

� �lm�1

ub

sm�1¼ k
l1
lb

� �
���

� �lm�1

lb

Pmðsmjsm�1ÞPm�1;nestðsm�1jkÞ; sm 2 kl1
lb

� �
� � �

� �lm

lb
; kl1

ub

� �
� � �

� �lm

ub

� �
;

..

.

PpðsNljkÞ ¼
Xk

l1
ub

� �
���

� �lNl�1

ub

sNl�1¼ k
l1
ub

� �
���

� �lNl�1

lb

PNlðsNljsNl�1ÞPNl�1;nestðkNl�1jkÞ;

ð9Þ
where kl1
lb; k

l1
ub can be defined according to Eq. (7). Other bounds can be defined recursively as:
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where the superscript lm is used to denote the link number.
Fig. 7 demonstrates the calculation process of nested delay operator from P1(s1jk) to P2(s2jk) for vehicles entering link 1 at

time index k. By the proposed PMF definition of the exit time, we can first obtain a series of blank bars in the right-hand side
of the figure. Each time index s1 (corresponding to each blank bar in the right-hand side of the figure) between kl1

lb; k
l1
ub

h i
re-

sults in a PMF P2(s2js1) according to the exit time probability defined by Eqs. (4) and (8). For example, in the upmost part of
Fig. 7, time index s1 ¼ kl1

lb yields a PMF P2(s2js1) depicted in red10 bars while s1 ¼ kl1
ub results in a PMF P2(s2js1) in green color.

Therefore, for vehicles entering link 1 at k, the potential interval of exit time from link 2 is extended to kl1
lb

� �l2

lb
; ðkl1

ubÞ
l2
ub

� �
, e.g. the

left-hand side of the upmost part of Fig. 7. We then apply the Bayes’ rule defined by Eq. (9) to obtained the nested probabilities,
i.e. P2(s2js1)P1,nest(s1jk) depicted in the middle part of the figure. Finally, the PMF of journey time for vehicles entering link 1 at
time index k is given by the summation of the nested probabilities which is depicted in the lower part of Fig. 7. In Appendix A.3
interpretation of color in Fig. 7, the reader is referred to the web version of this article.



Fig. 8. The skew normal distribution.
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of the paper, we will show that summations of the nested probabilities over the corresponding sampling time steps equal to one
for each departure time k.

4. Statistical distribution fitting and buffer-time index

4.1. Distribution fitting of dynamic stochastic journey time

After the PMFs of link exit time and journey time are obtained, the problem at hand now is to describe them by appro-
priate distributions. van Lint et al. (2008) found that the stochastic journey time may not follow the standard normal distri-
bution in which different patterns of skewness can be observed under different traffic conditions. The travel time under the
free-flow condition usually follows a normal distribution. On the other hand, under the congested condition or the conges-
tion onset/dissolve process, the link travel time may follow a skewed distribution (van Lint et al., 2008; Kharoufeh and Gau-
tam, 2004). Thus, fitting the PMF to a distribution with skewness should better describe the uncertainty of journey time (or
link time). The shape of the journey time distribution will also affect the evaluation of the travel time reliability.

After obtaining the PMF of the path journey time, various random distribution fitting techniques can be applied to obtain
the distribution that best fits the estimated PMF. A distribution TrsðkÞ ¼ gð�bðkÞ;rbðkÞ;aðkÞÞ is the distribution of the dynamic
journey time at time k, if gð�bðkÞ;rbðkÞ;aðkÞÞ best fits the PMF and/or the corresponding CMF with mean �bðkÞ, standard devi-
ation rb(k) and shape parameter a(k) which reflects the skewness of the distribution b(k). In this paper, the skew normal dis-
tribution is used to describe the characteristic of the travel time distribution with the PDF (Azzalini and Capitanio, 1999):
11 The
skewne
some co
valid.
gðxÞ ¼ 2
1ffiffiffiffiffiffiffi
2p
p e�

x2
2

Z ax

�1

1ffiffiffiffiffiffiffi
2p
p e�

t2
2 dt;
where the distribution is called positive skew, if a > 0, that is with a longer right tail and concentrating on the left side; while
negative skew, if a < 0, that is with a longer left tail and concentrating on the right side (see, e.g. Fig. 8). A direct reason for us
to adopt the skew normal distribution is that it generalizes the normal distribution (which is widely utilized in transporta-
tion literature and the SCTM framework) to allow for non-zero skewness.11

Remark 4.1. Fitting the PMF and CMF to certain distribution is mainly a preparation for travel time reliability analysis. If one
only required to calculate the mean, variance and skewness of the distribution, standard technique can be directly applied to
the PMF and CMF without fitting the PMF to a particular statistical distribution. For example, the mean travel time �bðkÞ can
be calculated via weighted average algorithm as:
�bðkÞ ¼
Xk0¼kub

k0¼klb

Pðk0jkÞ � ðk0 � kÞ: ð11Þ
The confidence interval, e.g. 90% confidence interval bounded by 5th percentile and 95th percentile, can be obtained
directly from CMF. Finally, the skewness can be evaluated by:
aðkÞ ¼
Pk0¼kub

k0¼klb
Pðk0jkÞ � ðk0 � kÞ � �bðkÞ

� �3

Pk0¼kub
k0¼klb

Pðk0jkÞ � ðk0 � kÞ � �bðkÞ
� �3=2 : ð12Þ
skew normal distribution was found to be a mathematically tractable extension of the normal distribution with the addition of a parameter to regulate
ss that has reasonable flexibility in real data fitting especially for multivariate cases (Azzalini et al., 1999). The skew normal distribution also maintains
nvenient formal properties of the normal distribution. In particular, the associated distribution theory of linear and quadratic forms remains largely
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4.2. Index of travel time reliability

As previously explained, there are many different definitions for travel time reliability. Different indices are appropriate
for different purposes and circumstances. A comprehensive overview of travel time reliability measures can be found in (Lo-
max et al., 2003; Texas Transportation Institute and Cambridge Systems Inc., 2006; van Lint et al., 2008), here we summarize
several measures for travel time reliability in brief for completeness.

� Statistical range methods, which is directly related to the shape of travel time distribution (Bates et al., 2001; Lomax et al.,
2003). For instance, Travel Time Window (e.g. mean travel time ± a factor times standard deviation). The underlying
‘‘plus’’ or ‘‘minus’’ operation indicates the possible spread of travel time around the expected value, wherein the distri-
bution of travel time is implicitly assumed to be symmetric. Some other measures that can be categorized into this sort
are the Percentage Variation (i.e. the ratio of standard deviation and mean travel time), the Variability Index (the ratio
between 95% travel time during peak hours and 95% during off peak). Theoretical (Kharoufeh and Gautam, 2004) and
empirical (van Lint et al., 2008) studies have revealed that symmetrical distribution of travel time is valid only under
the assumptions that individual vehicles maintain a constant speed and that speeds are symmetric about their means
which probably exists only in the case of free-flow conditions.
� Buffer time methods. The buffer time index (BTI) represents the extra time that travelers must add to their average travel

time when planning trips to ensure their on-time arrivals (or to have less than X% chance to miss an appointment) (Lomax
et al., 2003; Texas Transportation Institute and Cambridge Systems Inc., 2006). The buffer time calculates the minutes of
extra time needed to guarantee a statistically minimum number of arrivals within the preferred arrival time at destina-
tion. In literature, see e.g. (Lomax et al., 2003; Texas Transportation Institute and Cambridge Systems Inc., 2006), buffer
time is expressed as the distance between 90th or 95th percentile travel time and the average travel time. If the 95th per-
centile travel time is chosen, the buffer time index can then be calculated by Eq. (13):
Buffer time index ¼ 95th Percentile travel time� Average travel time
Average travel time

� 100%: ð13Þ
As an extension of BTI, planning time index (PTI) evaluate the ratio of the time needed to ensure on-time arrival (or less than
X% chance to miss) to the free-flow travel time:
Planning time index ¼ 95th Percentile travel time
Free-flow time

� 100%: ð14Þ
� Tardy trip measure defines a threshold to identify an acceptable late arrival time to describe the travel time unreliability
using the amount of trips that result in late arrivals, e.g. misery index is defined as the gap between the average travel
time of the 20% worst trips and the overall mean travel time (Lomax et al., 2003; Texas Transportation Institute and Cam-
bridge Systems Inc., 2006).
� Probabilistic measures: the probability that a trip would be made within the nominal travel time multiplied by a pre-

scribed factor (Bell, 1999; Yang et al., 2000). The probabilistic measures are often used as measure for travel time
unreliability in literature. Probabilistic measures utilize either a threshold for travel time or a predefined time win-
dow to distinguish between reliable and unreliable travel times. In this sense, choosing the parameters (e.g. pre-
scribed factor) properly is essential for these probabilistic measures, which renders they are application and
context specific.
� Skew-width measures, wherein skewness of travel time is defined as the ratio of the distance between the 90th and

50th percentile travel time to the distance between the 50th and 10th percentile travel time. In general, the larger
skewness of travel time means a higher probability for extreme travel times (relative to the mean travel time) to
occur.

The main motivation and advantage of the stochastic network framework is its capability to incorporate travel time var-
iability into travelers decisions (Bell and Cassir, 2000, 2002; Bates et al., 2001). Buffer time index and planning time index are
the most frequently utilized measures to quantify travel time reliability (Lomax et al., 2003; Texas Transportation Institute
and Cambridge Systems Inc., 2006). Obviously, a higher BTI means a greater variance compared with mean travel time but a
higher PTI implies a greater travel time budget for on-time arrival. To this end, also for the illustrative purpose the BTI and
PTI are adopted as the measures of travel time reliability for the case studies in this paper, where the probability of arriving
on-time is set at the 95th percentile which can be translated as ‘‘can be late for work 1 day per month without getting into
too much trouble’’ or 95% of travel time observations can be found under this criterion.
5. Empirical studies

This section presents two empirical studies to illustrate and validate the proposed algorithm for evaluation of stochastic
dynamic link and route travel time distributions with application to journey time reliability analysis. The first study is tested
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Fig. 9. Journey time distribution and reliability indexes for a freeway segment of I210W.
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on a short freeway section of Interstate-210W near Los Angeles while the second case concentrates on a long corridor of Han-
shin expressway between Toyonaka and Osaka in Japan. Generally speaking, the first study is a complementary part of the
empirical study in Sumalee et al. (2011) wherein historical data of 30 days collected by PeMS is utilized to simulate the ef-
fects of both demand and supply uncertainties. The second test intends to illustrate the effects of traffic incidents on journey
time distribution and its reliability under different traffic conditions. Robustness of the proposed algorithm against different
choices of parameters i, j, e is also shown in this test. The second case also tries to compare the estimation results considering
covariance structure with those obtained under independent assumption.
5.1. A freeway segment of I210-W, California

In this empirical study, we adopt the data from the empirical study in Sumalee et al. (2011) wherein the traffic flow esti-
mation problem was conducted to validate the performance of the SCTM. In this section, we import the flow estimation re-
sults obtained in Section 5.3 of Sumalee et al. (2011) to the the proposed algorithm to evaluate the stochastic dynamic travel
time and its reliability. Detailed description of the test site, calibration and traffic flow evaluation are given in Sumalee et al.
(2011).

Fig. 9 depicts the evaluation of journey time and its reliability indexes. The journey time is about 100 s from 4:00 am–
6:00 am. The uncertainty of journey time is small as reflected by the confident interval and the BTI curve. This route is very
reliable for this time period as the BTI is below 0.1.12 Due to the morning peak, the journey time starts to increase smoothly
(because of the average effect of the 30 days’ data). The variability of journey time also increases with respect to congestion
onset, congested traffic and congestion off-set as illustrated by the confident interval and BTI in Fig. 9. However, the journey
time can still be considered as reliable as the BTI is around 0.2. This implies that the journey time of this freeway segment
is stable with repect to day-to-day (recurrent) demand uncertainty. Although it is not very significant, we can observe that
the BTI admits larger values during congestion onset and congestion offset than very congested traffic condition. Similar find-
ings are reported by Higatani et al. (2009) and be ‘‘duplicated’’ in the next empirical study for a long freeway corridor, wherein it
12 BTI is adopted to quantify travel time reliability in PeMS. A route is considered as reliable for all time periods when the BTI is less than 0.2, moderately
reliable when the BTI is between 0.2 and 0.4, and unreliable when the BTI exceeds 0.4.



Fig. 10. Map of the test site (Source: Google map).
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is claimed that peaks of the average travel time do not coincide with those of the buffer time index whereas the tendency of PTI
is consistent with that of average travel time as depicted in Fig. 9. Note that the BTI does not decrease to that of the free-flowing



Fig. 11. Segments and links of the corridor.

Table 1
The parameters of fundamental diagrams along the route under normal traffic condition.

Link ID (length/km) Section ID v̂ f rv̂ f
ŵc rŵc q̂c q̂J rq̂J

bQ m
rbQ m

Link 1 (2.2) Section 1 82 6.2 13 5.0 39 279 98 3300 248
Link 2 (1.0) Section 2 106 16.2 14.5 4.9 28.1 235 78.5 3000 456
Link 3 (0.3) Section 3 78 9.2 13.6 3.7 44.3 302 76.3 3500 407
Link 4 (3.1) Section 4 73 6.5 23.8 6.6 54.2 222 50.6 4000 350
Link 5–6 (1.5) Section 5 78 18.6 22.3 9.9 51 231 100 4000 953

Section 6 83 7.4 18.8 5.2 48 261 63.3 4000 356
Link 7 (1.8) Section 7 71 5.2 19.7 6.2 55.7 259 70.6 4000 288
Link 8 (0.9) Section 8 72 5.1 23.8 4.3 56.6 225 31.0 4000 289
Link 9 (0.3) Section 9 73 6.5 16.2 5.2 52.0 286 84.0 3800 340
Link 10 (1.0) Section 10 69 6.3 13.1 2.7 76.8 436.8 64.0 4000 367
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stage even though the mean travel time decreases to free-flow time. This is because: on the one hand, the corresponding var-
iance is much larger than that of the free-flowing stage; on the other hand, the mean traffic density is closed to the critical den-
sity (as shown in Figs. 25–26 of Sumalee et al. (2011)) which implies that the freeway segment is still in the process of
congestion offset. In contrast, the PTI decreases with respect to the mean travel time.
5.2. Ikeda south bound of Hanshin expressway

5.2.1. Description of the test segment and data preparation
This empirical study is conducted on a 12 km segment of No.11 Hanshin Expressway Ikeda corridor from Toyonaka city to

the CBD of Osaka as depicted in Fig. 10. This expressway, which includes 10 sections, is composed of 9 links determined by
the on-ramps and off-ramps as shown in Fig. 11. Table 1 presents the calibration results of fundamental diagrams based on



Table 2
Assignment of cells and segments for SCTM.

Link ID Section ID Cell ID and length (km) SCTM segment ID

Link 1 Section 1 Cell S1A (0.2)⁄ Segment S1A–S1D
Cell S1B (0.3)
Cell S1C (0.2)
Cell S1D (0.3)⁄

Cell S1E (0.4)⁄ Segment S1E–S2A
Cell S1F (0.4)
Cell S1G (0.4)

Link 2 Section 2 Cell S2A (0.3)⁄

Cell S2B (0.3)⁄ Segment S2B–S3
Cell S2C (0.2)
Cell S2D (0.2)

Link 3 Section 3 Cell S3 (0.3)⁄

Link 4 Section 4 Cell S4A (0.5)⁄ Segment S4A–S4D
Cell S4B (0.5)
Cell S4C (0.5)
Cell S4D (0.5)⁄

Cell S4E (0.4)⁄ Segment S4E–S5A
Cell S4F (0.4)
Cell S4G (0.3)

Link 5–6 Section 5 Cell S5A (0.3)⁄

Cell S5B (0.2)⁄ Segment S5B–S6A
Cell S5C (0.3)
Cell S5D (0.2)

Section 6 Cell S6A (0.3)⁄

Cell S6B (0.2)⁄ Segment S6B–S7C
Link 7 Section 7 Cell S7A (0.5)

Cell S7B (0.5)
Cell S7C (0.4)⁄

Cell S7D (0.2)⁄ Segment S7D–S8B
Cell S7E (0.2)

Link 8 Section 8 Cell S8A (0.3)
Cell S8B (0.3)⁄

Cell S8C (0.2)⁄ Segment S8C–S9A
Link 9 Section 9 Cell S9A (0.2)⁄

Cell S9B (0.2)⁄ Segment S9B–S10C
Link 10 Section 10 Cell S10A (0.3)

Cell S10B (0.3)
Cell S10C (0.2)⁄

Table 3
Incident record of the main road between 7:00 and 21:00 on Monday.

Incident
ID

Incident
occurrence date

Incident
occurrence time

Incident
ending date

Incident
ending time

Cause Severity Location Cells
involved

1898 2008/5/12 7:16:00 2008/5/12 7:28:00 Jam 4.0–5. 0 Cell 5B–6B
1599 2008/5/12 8:30:00 2008/5/12 10:35:00 Traffic accident One lane

closure
0.7–0.9 Cell 10A

1415 2008/5/12 10:02:00 2008/5/12 10:14:00 Obstacle dropped
from veh.

One lane
closure

0.2 Cell 10C

1910 2008/5/12 8:43:00 2008/5/12 10:36:00 Jam 3.0–3.0
1909 2008/5/12 8:38:00 2008/5/12 10:35:00 Jam 0.7–0. 9 Cell 10A
1417 2008/5/12 10:41:00 2008/5/12 10:50:00 Mulfunction of veh. One lane

closure
1.0–3.0 Cell 7B–

Cell 9B
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the historical data under the normal traffic condition (i.e. no incident), which is provided by detectors equipped within each
section. The historical data, which will be used in simulation, includes flow and speed, which is provided by all the 11 detec-
tors from 0:00 am of May 11 (Sunday), 2008 to 23:55 pm of May 17 (Saturday), 2008 with a resolution of 5 min.13 A simu-
lation time increment of 10 s is chosen for this study. Table 2 depicts the assignment of cells along the whole expressway
13 This data set is indeed not sufficient enough to produce accurate calibration and subsequent simulation results. However, insufficient data and lack of
incident records (or inaccurate records) are very common in practice. One of the purposes of this empirical study is to demonstrate that the SCTM and the
proposed algorithm can produce satisfactory results even under insufficient data and lack of incident records.
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Fig. 12. Measured and estimated density with 68% confidence interval.
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corridor, where the 38 cells mentioned in the table constitute the 10 SCTM segments and the cells with superscript ‘‘⁄’’ are those
equipped with detectors.

The objective of this empirical study is to simulate the effects of traffic incidents on the dynamic journey time and traffic
states, e.g. how would different incident locations, time of occurrence and duration generate different kinds of traffic jams.
Table 3 gives a demonstration of incident record which indicates 3 accidents and 3 jams occurred during 7:00 am–21:00 pm
on May 12, 2008 on the main road. Jam 1898 during 7:16 am–7:28 am started from Link 5 and Link 6 was not caused by
accident. Jam 1909 and Jam 1910 during 8:38 am–10:35 am on Link 10 and its upstream segments were induced by Incident
1599 and Incident 1419 during 8:30 am–10:35 am on Link10, while Incident 1417 did not lead to any congestion. Note that
the information on the jams are not complete, e.g. the spillback effects of congestion are not recorded in the database.
5.2.2. Traffic states under incident scenarios
Figs. 12–16 present the simulation results generated by the SCTM and the proposed stochastic dynamic travel time algo-

rithm based on the parameters listed in Table 1, detected boundary conditions, and the incident records. The fundamental
diagram parameters are adjusted in accordance with the lane closure conditions under traffic accidents.

As shown in Fig. 12, cells S1A–S1E maintain free flowing condition throughout the whole simulation period.14 This implies
that this segment was not influenced by any spillback effect of the congestion caused by incidents or other jams. However, from
cell S1F and onward (from upstream to downstream), all the downstream links suffered from congestion induced by the spill-
back effect caused by Jam 1898 originated from cells S5B–S6B (i.e. post kilometer 4–5 km in the incident record) at 7:16 am. The
congestion wave-front spent about 25 min to reach cell S1F. We may roughly deduce the average speed of this backward wave
to be about 16 km/h, which is close to the average of the calibrated mean values (about 17 km/h). Jam 1909 and Jam 1910 were
induced by Incident 1599 at cell S10A. The congestion wave propagated to upstream until it reached cell S4D. During this spill-
back process, the congestion wave caused by Jam 1909 and Jam 1910 merged with that caused by Jam 1898 at S7A. From the
14 Indeed, cells S1B, S1C and S1D are also free flowing which are not depicted in the figure. We do not present the simulation results for all cells due to limited
space. Simulation results of cells equipped with detectors and those related to incident induced congestion are demonstrated for the purpose of comparison.
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simulation results, we can observe that both traffic density and its variance are propagating backward to the upstream cells
under congested traffic conditions. The sudden increase of traffic density of cell S10C around 10:10 am reflects the effect of Inci-
dent 1415. However, no obvious congestion was caused by this incident as it did not cause dense traffic on cell S10C and its
adjacent cells. Similarly, Incident 1417 did not lead to any significant disturbance to the traffic flow. These reflect that the effect
of an incident on traffic flow is not significant if its time of occurrence is inside the off-peak hours. On the other hand, congestion
wave would traverse fast during peak hours which in turn yields long queues induced by traffic incidents. This symbiotic rela-
tionship between congestion and traffic incidents has been reported in traffic incident literature (Özbay and Kachroo, 1999). To
be precise, congested traffic condition is one of the main reasons for traffic accidents. Incidents on freeways interrupt traffic
flows unexpectedly which cause ‘‘unusual’’ bottlenecks and secondary accidents. Those accidents cause more congestion, which
in turn, causes more accidents.

The estimated traffic densities against the corresponding detected ones presented in Figs. 12 and 13 confirm that the
SCTM performs well in stochastic traffic state estimation even under incidental and congested traffic scenarios. Moreover,
the model is also able to capture congestion formation, spillback and dissolve. These stochastic densities are suitable for
the applications of dynamic stochastic journey time and the subsequent journey time reliability analysis.

5.2.3. Journey time estimation and its reliability analysis
Given the estimated stochastic dynamic cell densities, we are ready to estimate dynamic link travel time distributions of

the 9 links by the proposed PMF based algorithm. To fulfil our purpose of investigating traffic incident effects on dynamic
journey distribution and its reliability analysis, we here present only the results closely related. Table 4 presents the MAPE
(Mean Absolute Percentage Error) of estimated journey time compared with the available measured travel times. The results
confirm a satisfactory performance of the proposed method. Table 5 presents the MAPE of journey time for Path 1 with dif-
ferent pairs of e and i, j. The table illustrates that the accuracy of journey time generally remains almost the same. This im-
plies that the proposed method is not sensitive to the choice of these parameters. We also calculate the dynamic travel time
distribution by incorporating the covariance structure of traffic flow according to the method depicted in Appendix A.1. The
MAPE obtained is 9.9%. Compared with that obtained by the independent assumption, which is 9.93%, the difference is not
significant.

Since the journey time over the whole corridor (from link 1 to link 10) is not directly provided by the database, Fig. 14
depicts the journey time estimation results and the reliability indexes. At the beginning of the simulation horizon, the jour-
8 10 12 14 16 18 20
0

50

100

150

200
Estimated density of S7C

8 10 12 14 16 18 20
0

50

100

150

200
Estimated density of S6B(Tskamoto onramp)

D
en

si
ty

 (v
eh

/k
m

)

8 10 12 14 16 18 20
0

50

100

150

200
Estimated density of S9B(Umeda onramp)

D
en

si
ty

 (v
eh

/k
m

)

8 10 12 14 16 18 20
0

50

100

150

200
Estimated density of S10C(Osaka CBD)

Esimated mean density
Mean+SD
Mean−SD
Measured data

Time (clock) Time (clock)

Fig. 13. Measured and estimated density with 68% confidence interval.
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Table 4
MAPE of the estimated journey time.

Journey Path 1 (from link 1 to 2) Path 2 (from link 1 to 7) Path 3 (from link 1 to 8)

MAPE 9.93% 9.75% 9.78%

Table 5
MAPE of the estimated journey time of Path 1 with different parameter sets.

MAPE

i, j e

0.5 (%) 1 (%) 2 (%)

[�r,r] 10.5 10.5 10.7
[�3r,3r] 9.93 9.93 9.94
[�4r,4r] 9.93 9.93 9.95
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ney time was about 10 min. However, the journey time remained at such a small value only for about 5 min and started to
increase sharply since 7:05 am due to Jam 1898. This congestion period increased the journey time to 25 min, which is about
3 times of the free-flow time. At about 8:00 am, the journey time reduced a bit due to the dispersion of Jam 1898, while it
increased again due to Jam 1909 and Jam 1910 started from about 8:30 am. Finally, the journey time reduced to free flow
time after all these congestions were dissolved. Fig. 14 also presents the BTI and PTI of the journey time in the second figure.
The unreliable periods concentrate during 7:05 am–11:30 am due to the jams and incidents. The peaks of travel time reli-
ability index appear at three times: (1) the congestion onset progress around 7:12 am caused by Jam 1898; (2) the intersec-
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tion of congestion dissolve of Jam 1898 and congestion onset of Jams 1909/1910 around 8:30 am; (3) the final congestion
dissolve around 11:15 am. The buffer time index shows that the route travel time was quite stable except for the congestion
parts caused by peak-hour demand and incidents which is consistent with the findings in Higatani et al. (2009). In Higatani
et al. (2009), the authors found also that peaks of the average travel time do not coincide with those of the buffer time index.
Indeed, the BTI would have larger value if the corresponding distribution is more variable. Moreover, under very congested
traffic condition (which is a steady state), the variability of travel time is smaller than those under congestion onset and off-
set (which are transient states) whereas the mean travel time under congested traffic condition is larger than those under
congestion onset and offset. In Higatani et al. (2009), it is claimed that the peak of buffer time index comes after the peak of
the average travel time for this expressway corridor. This coincides with our finding that the peaks of buffer time index ap-
pear during congestion on-set and off-set, whereas the tendency of PTI is consistent with that of average travel time.

From Fig. 14, it can be observed that the gaps between the mean travel time with the upper bound of 90% confidence
interval and that with the lower bound are not equivalent. This implies that travel time is skewed distributed. van Lint
et al. (2008) concluded the characteristics of skewness during the different periods of congestion:

1. Congestion onset: the mean travel times are increasing, and the distribution is positively skew.
2. Congestion dissolve: the mean travel times are decreasing, and the distribution is positively skew.
3. Congestion: the mean travel times are high, while the travel time distribution is wide and either symmetric or slightly

negatively skew.
4. Free flow: the mean travel times are low, and the travel time distribution is narrow and either symmetric or slightly neg-

atively skew.

The above conclusions were based on the analysis of statistics. However, in this research, similar results can also be ob-
served from the simulation results of this empirical study, such as the shape parameters of the stochastic travel time as de-
picted in Fig. 14. Generally, the journey times are positively skew during the congestion onset and congestion dissolve
periods (referring to the traffic density). During the stationary stages of congestion (during 7:30 am–8:15 am by referring
to traffic density), mainly symmetric and (slightly) negatively skew can be observed. Another congestion onset starts at
around 8:20 am which yields another period of positively skew distribution of travel time. Similar analysis can be applied
to congestions caused by other incidents. After 11:30 am, the journey times are approximately symmetric normally distrib-
uted. In order to illustrate the characteristics of the skewness of journey time, Figs. 15 and 16 depict the PMFs and corre-
sponding shape parameter to assist the comprehension. The positively skew distributions in Fig. 15 confirm Conclusion
(1) and (2) by presenting the PMFs of the journey times during congestion onset progress at 7:06:40 am and congestion dis-
solve progress at 10:25:00 am. Fig. 16 confirms Conclusion (3) and (4) by the negatively skew distributions at 8:30 am under
congested condition and the symmetric distribution at 14:30 pm under free flowing condition respectively.

6. Conclusions

This paper proposed an algorithm to estimate/predict dynamic stochastic journey time distribution and to assess the dy-
namic journey time reliability based on the stochastic cell transmission model (Sumalee et al., 2011). Stochastic cumulative
link inflow and outflow profiles were generated the SCTM. The algorithm for calculating the probability mass function (PMF)
of the stochastic dynamic journey time was proposed by devising the sampling process of the cumulative flows for each en-
try time interval. The journey time was then estimated by extending the nested delay operator to the stochastic case based
on the conditional probability. The paper also proposed a method to fit the estimated PMF of the journey time to a class of
skew normal distribution to determine the skewness of the journey time distribution.

The model and the algorithm were tested with the two empirical case studies, and the results showed that the algorithm
is applicable both for the prediction based on the historical data and the estimation given the incident record. The skewness
of the journey time distribution proposed in the first empirical study was generally consistent with the statistical results
reported by van Lint et al. (2008). The second empirical study on an expressway between Toyanaka-kita and Osaka CBD illus-
trated that the model and the algorithm are capable of simulating traffic conditions caused by the jams and incidents. Moti-
vated by the current results, our future work will be built on the SCTM and the proposed journey time estimation algorithm
to detect incident/abnormal traffic states on real-time basis. On the other hand, the proposed methods have potential appli-
cations in stochastic dynamic traffic assignment studies. In the deterministic dynamic traffic assignment framework, four
key components are required: (i) models of link and path delays; (ii) flow dynamics; (iii) flow propagation constraints;
and (iv) a route/departure-time choice model. All these components are either missing from the literature on stochastic dy-
namic traffic assignment or not very well defined. The SCTM offers an approach to describe components (ii) and (iii). The link
and route travel time calculation methods developed in this paper offer the first component.

Acknowledgements

This research is sponsored by the Research Fund projects (PolyU 5271/08E and PolyU 5250/11E) of the Hong Kong Re-
search Grant Council. The author also would like to thank the Freeway Performance Measurement (PeMS) Project and the
Hanshin Expressway for providing the data in the empirical studies.



282 A. Sumalee et al. / Transportation Research Part C 35 (2013) 263–285
Appendix A
Key notations

lm
 link m, m = 1, 2, . . . ,Nl

p
 path p

Sj
 segment j, j = 1, 2, . . . ,Ns

s
 operational mode of the SCTM, s = FF, CC, CF, FC1, FC2

t
 discrete time interval
qlm
in ðtÞ
 inflow rate of link lm at time t
qlm
outðtÞ
 outflow rate of link lm at time t
Clm
in ðtÞ
 cumulative inflow of link lm up to time t
Clm
outðtÞ
 cumulative outflow of link lm up to time t
slm ðtÞ
 exit time from link lm for vehicles entering link lm at time t

blm ðtÞ
 link travel time of lm for vehicles entering link lm at time t

gp(t)
 journey time of path p for vehicles entering the origin at time t

~quðkÞ
 measured density at the upstream boundary of a segment at time step k

~qdðkÞ
 measured density at the downstream boundary of a segment at time step k

~quðkÞ
 measured inflow rate at the upstream boundary of a segment at time step k
ql
inðkÞ
 inflow rate of link l at time step k
ql
outðkÞ
 outflow rate of link l at time stepk
Clm
in ðkÞ
 mean of the cumulative inflow of link lm up to time stepk
rClm
in
ðkÞ
 standard deviation of the cumulative inflow of link lm up to time stepk
[klb, kub]
 sampling time interval for link exit time for vehicles entering the link at time step k

P0k0 jk
 likelihood of the exit time to be k0 for vehicles entering the link at time step k
Pk0 jk
 relative frequency of the exit time to be k0 for vehicles entering the link at time step k
qlm
i ðkÞ
 estimated traffic density of cell i on link lm at time step k
Pm,nest(kmjk)
 relative frequency of km to be the exit time step from link lm for

vehicles entering the origin of the path at time step k
A.1. Variance of the matching error

To calculate the variance of the matching error, it is convenient for us to express it in a vector form so as to make use of
the property of multivariate normal distribution (Gut, 2009; Härdle and Simar, 2007; Johnson and Wichern, 2007). Let
a ¼ �slm
1 ;�slm

2 ; . . . ;�slm
NClm

;Dt; . . . ;Dt
� �T

2 R‘1 ;
and
Q ¼ qlm
1 ðkÞ;q

lm
2 ðkÞ; . . . ;qlm

NClm
ðkÞ; qlm

outðkþ 1Þ; . . . ; qlm
outðk

0Þ
� �T

:

The matching error can then be written as ekðk0Þ ¼ aTQ. By assumption, Q has a multivariate normal distribution. Then,
ek(k0) is a normally distributed random variable as every linear combination of normally distributed variables is normally
distributed (Gut, 2009; Härdle and Simar, 2007; Johnson and Wichern, 2007). The variance of the matching error is now
Varðekðk0ÞÞ ¼ VarðaTQÞ ¼ aT VarðQÞa; ð15Þ
while the covariance matrix VarðQÞ can be obtained from the SCTM. For the special case, where the components of Q are as-
sumed to be independent, VarðQÞ is a diagonal matrix which is denoted as Cd. By this observation, we may have more inter-
esting results by exploring the relation between the independent case and the dependent case. To begin with, we first
introduce the following lemma, which states that we can always find a linear transformation, e.g. Mahalanobis transforma-
tion, to transfer a vector of multivariate normal distribution with dependent components into a random vector with inde-
pendent (standard) normal random variables (Gut, 2009; Härdle and Simar, 2007; Johnson and Wichern, 2007):

Lemma A.1. For a random vector Q 	 Nðl; KÞ has a multivariate normal distribution, we have:

� There exists a random ‘2-vector Z, whose components are independent standard normal random variables, a ‘1-vector l, and a
‘1 � ‘2 matrix A, such that Q ¼ AZ þ l. The covariance matrix of Q is then given by C = AAT with rankC = ‘2.
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� Let H ¼ CTQ, where the orthogonal matrix C is such that CTKC = D. Then H 	 N(CTl, D). Moreover, the components of H are
independent and Var Yk = kk, k = 1,2, . . . ,‘1, where k1; k1; . . . ; k‘1 are the eigenvalues of K.
� For the Mahalanobis transformation Y ¼ K�1=2ðQ� lÞ, we have Y 	 Nð0; IÞ, i.e., the components of Y are independent stan-

dard normal random variables.

By this lemma, we can always find some invertible linear transformation (i.e. isomorphism), such that the original cor-
related random vector can be transferred to an independent one. Also note that the variance of ek(k0) with correlated com-
ponents of Q, say Var1(ek(k0)), is a linear functions of that with independent components of Q, say Var2(ek(k0)), i.e.
Var1ðekðk0ÞÞ ¼ bk;k0Var2ðekðk0ÞÞ, where bk;k0 is certain constant. Thus, the likelihood measure given by Eq. (4) may be changed.
However, the relative frequency given by Eq. (8) may not change significantly as shown in the empirical study. The idea of
coordinate transformation is commonly utilized in statistics and signal processing theory, e.g. the unscented Kalman filter.

A.2. Properties of the lower and upper bounds and the choice of i, j in Eq. (7)

In the definition of the lower and upper bounds of the sampling time interval as given by Eq. (7), parameters i, j, which can
be selected as small positive integers (or non-integers), are added as another degree of freedom to adjust the sampling time
interval. Roughly speaking, i, j can be adjusted such that there is no overlapping between the two curves Clm

in ðkÞ � irClm
in
ðkÞ and

Clm
outðk

0Þ þ jrClm
out
ðkÞ, which can be easily achieved by choosing small enough i, j. In this appendix, we give some insights to the

choice of i, j. Foremost among these is the monotonicity of the functions
J1ðk
0Þ ¼ Clm

in ðkÞ � irClm
in
ðkÞ

� �
� Clm

outðk
0Þ þ jrClm

out
ðk0Þ

� �
;

J2ðk
0Þ ¼ Clm

in ðkÞ þ irClm
in
ðkÞ

� �
� Clm

outðk
0Þ � jrClm

out
ðk0Þ

� �
;

with respect to the exit time index k0 given the entry time k. Given k, the terms Clm
in ðkÞ � irClm

in
ðkÞ

� �
and Clm

in ðkÞ þ irClm
in
ðkÞ

� �
are

known constants. The monotonicity of J1(k0) is obvious since Clm
outðk

0Þ þ jrClm
out
ðk0Þ

� �
is monotone increasing with respect to the

exit time index k0. The monotonicity of J2(k0) can be achieved by choosing j properly. To see this, let us express
Clm

outðk
0 þ 1Þ ¼ Clm

outðk
0Þ þ qlm

outðk
0 þ 1Þ by definition, where qlm

outðk
0 þ 1Þ is the outflow of link lm during [k0, k0 + 1) Dt.
J2ðk
0 þ 1Þ � J2ðk

0Þ ¼ � Clm
outðk

0 þ 1Þ � jrClm
out
ðk0 þ 1Þ

� �
þ Clm

outðk
0Þ � jrClm

out
ðk0Þ

� �
;

¼ � �qlm
outðk

0 þ 1Þ � j rClm
out
ðk0 þ 1Þ � rClm

out
ðk0Þ

� �� �
:

By definition, we have rClm
out
ðk0 þ 1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rClm

out
ðk0Þ

� �2
þ rqlm

out
ðk0 þ 1Þ

� �2
r

. Furthermore, by elementary inequality we have the
following relation
rClm
out
ðk0Þ þ rqlm

out
ðk0 þ 1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rClm

out
ðk0Þ þ rqlm

out
ðk0 þ 1Þ

� �2
r

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rClm

out
ðk0Þ

� �2
þ rqlm

out
ðk0 þ 1Þ

� �2
r

:

The above relationship implies that
rClm
out
ðk0 þ 1Þ � rClm

out
ðk0Þ 6 rqlm

out
ðk0 þ 1Þ:
It is obvious that
J2ðk
0 þ 1Þ � J2ðk

0Þ 6 � �qlm
outðk

0 þ 1Þ � jrqlm
out
ðk0 þ 1Þ

� �
:

The parameter j can be chosen such that �qlm
outðk

0 þ 1Þ � jrqlm
out
ðk0 þ 1ÞP 0 to render the function J2(k0) be a monotone func-

tion of k0 given an entry time k. However, one may prefer to use fixed j rather than changing the value of j with respect to
different traffic condition. In this case, we may adopt the following modification
max �qlm
outðk

0 þ 1Þ � jrqlm
out
ðk0 þ 1Þ;0

n o
;

to enforce the monotonicity of envelop curves (thus do not admit oscillations) defined by the lower and upper bounds.

A.3. Summations of the nested probabilities

In this appendix, we will show that summations of the nested probabilities over the corresponding sampling time steps
are equal to one for each departure time k. The proof is established by mathematical induction in terms of link sequential
order. For the first link l1 of a route and a given departure time k, we have that
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Xkl1
ub

s1¼k
l1
lb

P1;nestðs1jkÞ ¼
Xkl1

ub

s1¼k
l1
lb

P1ðs1jkÞ ¼
Xkl1

ub

k0¼k
l1
lb

Pk0 jk ¼
Xkl1

ub

k0¼k
l1
lb

P0k0 jkPk
l1
ub

k
l1
lb

P0k0 jk

¼ 1: ð16Þ
Next, we will show that the nested probability of link l2 over the corresponding sampling time steps equals to one for the
departure time k.
Xkl1
ub

� �l2

ub

s2¼ k
l1
lb

� �l2

lb

P2;nestðs2jkÞ ¼
Xkl1

ub

� �l2

ub

s2¼ k
l1
lb

� �l2

lb

Xkl1
ub

s1¼k
l1
lb

P2ðs2js1ÞP1;nestðs1jkÞ:
Now, we interchange the order of summation so that
Xkl1
ub

� �l2

ub

s2¼ k
l1
lb

� �l2

lb

P2;nestðs2jkÞ ¼
Xkl1

ub

s1¼k
l1
lb

Xkl1
ub

� �l2

ub

s2¼ k
l1
lb

� �l2

lb

P2ðs2js1Þ

0BB@
1CCAP1;nestðs1jkÞ ¼

Xkl1
ub

s1¼k
l1
lb

P1;nestðs1jkÞ ¼ 1: ð17Þ
Now we assume this is hold for link lm on the route, that is
Xkl1
ub

� �
���

� �lm

ub

sm¼ k
l1
lb

� �
���

� �lm

lb

Pm;nestðsmjkÞ ¼ 1: ð18Þ
Then for link lm+1, we have
Xk
l1
ub

� �
���

� �lmþ1

ub

smþ1¼ k
l1
lb

� �
���

� �lmþ1

lb

Pmþ1;nestðsmþ1jkÞ ¼
Xk

l1
ub

� �
���

� �lmþ1

ub

smþ1¼ k
l1
lb

� �
���

� �lmþ1

lb

Xkl1
ub

� �
���

� �lm

ub

sm¼ k
l1
lb

� �
���

� �lm

lb

Pmþ1ðsmþ1jsmÞPm;nestðsmjkÞ: ð19Þ
By interchanging the order of summation, we have
Xk
l1
ub

� �
���

� �lmþ1

ub

smþ1¼ k
l1
lb

� �
���

� �lmþ1

lb

Pmþ1;nestðsmþ1jkÞ ¼
Xkl1
ub

� �
���

� �lm

ub

sm¼ k
l1
lb

� �
���

� �lm

lb

Xk
l1
ub

� �
���

� �lmþ1

ub

smþ1¼ k
l1
lb

� �
���

� �lmþ1

lb

Pmþ1ðsmþ1jsmÞ

0BB@
1CCAPm;nestðsmjkÞ: ð20Þ
By definition of the relative frequency (8), we have that
Xk
l1
ub

� �
���

� �lmþ1

ub

smþ1¼ k
l1
lb

� �
���

� �lmþ1

lb

Pmþ1ðsmþ1jsmÞ ¼ 1: ð21Þ
Thus
Xk
l1
ub

� �
���

� �lmþ1

ub

smþ1¼ k
l1
lb

� �
���

� �lmþ1

lb

Pmþ1;nestðsmþ1jkÞ ¼
Xkl1
ub

� �
���

� �lm

ub

sm¼ k
l1
lb

� �
���

� �lm

lb

Pm;nestðsmjkÞ: ð22Þ

� �� �

But

P k
l1
ub
���

lm

ub

sm¼ k
l1
lb

� �
���

� �lm

lb

Pm;nestðsmjkÞ ¼ 1 by assumption. Therefore,� �� �
Xk
l1
ub
���

lmþ1

ub

smþ1¼ k
l1
lb

� �
���

� �lmþ1

lb

Pmþ1;nestðsmþ1jkÞ ¼ 1; ð23Þ
which concludes the proof.
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