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Vehicle Reidentification With Self-Adaptive Time
Windows for Real-Time Travel Time Estimation

Jiankai Wang, Nakorn Indra-Payoong, Agachai Sumalee, and Sakda Panwai

Abstract—This paper proposes a vehicle reidentification (VRI)
system with self-adaptive time windows to estimate the mean
travel time for each time period on the freeway under traffic
demand and supply uncertainty. To capture the traffic dynamics
in real-time application, interperiod adjusting based on the expo-
nential smoothing technique is introduced to define an appropriate
time-window constraint for the VRI system. In addition, an in-
traperiod adjusting technique is also employed to handle the non-
predictable traffic congestion. To further reduce the negative effect
caused by the mismatches, a postprocessing technique, including
thresholding and stratified sampling, is performed on the travel
time data derived from the VRI system. Several representative
tests are carried out to evaluate the performance of the proposed
VRI against potential changes in traffic conditions, e.g., recurrent
traffic congestion, freeway bottlenecks, and traffic incidents. The
results show that this method can perform well under traffic
demand and supply uncertainty.

Index Terms—Stratified sampling, time window, travel time
estimation, vehicle reidentification (VRI), video image processing
(VIP) systems.

I. INTRODUCTION

A S ONE of the best indicators for evaluation of the perfor-
mance of the traffic system, accurate travel time data are

crucial for efficient traffic management and transport planning.
In addition, the individual travelers also require such informa-
tion (e.g., mean travel time) to make a better route decision
for their journeys. Therefore, it is of great importance to es-
timate the mean travel time in a robust and accurate manner.
Because of the worldwide deployment of inductive loops, a
large number of studies focused on utilizing the traffic data
(e.g., spot speed and traffic flow) obtained from the traditional
sensors to indirectly measure the mean travel time [1]–[3].
Despite their computational efficiency and analytical simplicity,
these indirect methods based on traditional sensors would result
in large errors when it comes to serious traffic congestion
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[4], [5]. To overcome this difficulty, considerable attention
has been paid to using the emerging sensing technologies to
directly track the individual probe vehicle and, hence, collect
the associated travel time (which could be termed as the probe-
vehicle-based method). Various advanced technologies, such
as Bluetooth [6], Global Positioning System technologies [7],
license plate recognition technique [8], and cellular phones [9],
have been incorporated to assign a unique identity (e.g., plate
number, media access control address, and radio frequency
identification tag) to the probe vehicle. By accurate match-
ing of vehicle identities, the travel time of the probe vehicle
can be directly measured. Although these probe-vehicle-based
approaches appear promising for travel time estimation, their
successes rely on a high penetration rate of probe vehicles. In
addition, vehicle tracking based on the unique identity could
raise privacy concerns. In this case, the vehicle reidentification
(VRI) scheme, which does not intrude the driver’s privacy,
provides an alternative way to measure travel time.

Generally, VRI is a process of matching vehicle signatures
(e.g., waveform [10], vehicle length [11], [12], vehicle color
[13], [14], and partial plate number [15], [16]) from one de-
tector to the next in the traffic network. On one hand, the
nonuniqueness of the vehicle signature would allow the VRI
system to track the vehicle anonymously. Moreover, the pene-
tration rate is 100% in principle as no in-vehicle equipment is
required. On the other hand, this property of very nonunique-
ness imposes a great challenge on the development of the
vehicle signature matching method. To improve the matching
accuracy, Coifman [17] compared the lengths of vehicle pla-
toons (i.e., vehicle platoon matching method). To further con-
sider the noise and the nonuniqueness of the vehicle signature,
Kwong et al. [18], [19] proposed a statistical matching method
in which the vehicle signature is treated as a random vari-
able, and a probabilistic measure is introduced for matching
decision-making. The aforementioned approaches, however,
are limited to the case with only one lane arterial and have a set
of stringent assumptions on vehicle traveling behaviors (e.g.,
no overtaking and no lane changing). Sumalee et al. [20] ex-
tended the statistical signature matching method illustrated by
Kwong et al. [18] to a more practical case in which overtaking
between vehicles and vehicle matching across multiple lanes
are both allowed. This proposed VRI system, which is also
referred to as the basic VRI, is based on the emerging video
image processing (VIP) systems [21], which enjoy several
advantages over other traffic detectors (e.g., inductive loops and
magnetic sensors) [22] as follows.

• First, VIP systems are capable of monitoring multiple
lanes and can function as zone detectors rather than point
sensors (e.g., magnetic sensor and inductive loops).
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• Unlike the inductive loops, VIP systems could provide us
the speed-independent signature. Various detailed vehicle
features (e.g., vehicle color, length, and type), which are
independent of the vehicle speed, can be extracted.

A probabilistic data fusion rule was then introduced to combine
these features derived from VIP systems to generate a match-
ing probability (posterior probability) for matching decision-
making. Sumalee et al. [20] also introduced a prior (fixed) time
window, which sets the upper and lower bounds of the travel
time in the hope of ruling out the unlikely candidate vehicles
and, hence, improving the matching accuracy, which, in turn,
would yield a more reliable travel time estimator. However, it
is noteworthy that this basic VRI was specifically designed for
a short time period in which the traffic condition is relatively
stable (i.e., steady-state condition) and may not be applicable
for “real time” application.

The development of the VRI system for “real time” imple-
mentation is still difficult as it faces the following two major
challenges. First, due to the traffic demand and supply un-
certainty (e.g., fluctuation in travel demand, bottleneck effect,
and traffic incidents), the traffic condition may substantially
change from period to period (i.e., free flow to congested).
Under these circumstances, the fixed time-window constraint
may compromise the performance of the basic VRI system.
Thus, instead of explicitly incorporating the time window,
Lin and Tong [23] utilized the travel time information estimated
from the spot speed data and proposed a combined estimation
model to reidentify the vehicles. As previously discussed that
the travel time estimated from spot speed data is not reliable,
this approach may not perform well under demand and supply
uncertainty. Second, vehicle mismatches, which are caused by
the nonuniqueness of the vehicle signature and the complex
topological structure of the traffic network, are to be expected.
This situation could be worse when a traffic incident happens.
Therefore, a robust postprocessing technique regarding the
individual travel time obtained from the VRI system is required.
Ndoye et al. [24] suggested a data clustering method to filter out
the erroneous individual travel time caused by the mismatches.
For practical implementation, however, it may still be difficult
to distinguish between the correct and erroneous travel time
under “abnormal” traffic conditions (e.g., the occurrence of an
incident or the bottleneck effect).

To this end, the objective of this paper is to propose an
improved VRI system to cope with the real-time travel time
estimation purpose. Specifically, this study aims to estimate the
mean travel time for each time period (e.g., 5-min period) on
the freeway under traffic demand and supply uncertainty. The
proposed VRI system is based on authors’ previous work [20]
with two major improvements as follows.

• First, to filter out the erroneous travel time caused by the
mismatches, a thresholding process based on the matching
probability is performed. A stratified sampling technique
based on the vehicle type is then introduced to reduce the
bias in the mean travel time estimates.

• Second, a self-adaptive time-window component (i.e., in-
terperiod and intraperiod adjusting) is introduced into the
basic VRI system to improve its robustness against po-

tential changes in traffic conditions. Interperiod adjusting
of the time window based on the exponential smooth-
ing technique is adopted to capture the traffic dynamics
from period to period, whereas intraperiod adjusting is
employed to handle the nonpredictable traffic congestion
(e.g., caused by traffic incidents or the bottleneck effect).

After the theoretical development, various numerical tests are
conducted to demonstrate the application of the improved VRI
system. The first simulation test investigates the feasibility of
utilizing the improved VRI system to estimate the mean travel
time for a closed freeway segment containing recurrent conges-
tion due to exceeding traffic demand. In the second simulation,
the method is evaluated on a freeway corridor with on- and
off-ramps. A freeway bottleneck then arises due to the high
merging demand and lane drops. The simulation results show
that the proposed method performs well under the bottleneck
effect. The third simulation test is then conducted to test the
performance of the algorithm under nonrecurrent congestion
(caused by traffic incidents).

The rest of this paper is organized as follows: Section II
presents a brief review on the basic VRI system. In Section III,
the postprocessing technique (e.g., thresholding and stratified
sampling) regarding the individual travel time obtained from
the VRI system is introduced. The detailed description and
analysis of the self-adaptive time-window component is pro-
posed in the following section. In Section V, simulated tests
are carried out to evaluate the performance of the proposed
system. Finally, we close this paper with the conclusions and
future works.

II. BASIC VISION-BASED VRI SYSTEM

The basic vision-based VRI with a fixed time window is
devised to estimate the mean travel time under static traffic
conditions (e.g., a steady state of free flow/congestion). In
line with the other traditional VRI schemes, the basic vision-
based VRI also involves two major steps: 1) vehicle feature
extraction; 2) vehicle signature matching method.

A. Vehicle Feature Extraction

As the detailed traffic data (particularly the vehicle feature
data) are not readily obtainable from the raw video record,
various VIP techniques are then employed for extracting the
required information.

1) Vehicle Detection: The success of vehicle detection
largely depends on the degree that a moving object (vehicle) can
be distinguished from its surroundings (background). In light
of this, background estimation technology is employed in the
detection subsystem. By calculating the media of a sequence of
video frames, the background of the video image is obtained.
Then, the image segmentation technique is performed to iden-
tify the foreground object (vehicle). The still image including
the detected vehicle is then clipped and stored for further
feature extraction. Along with the detection of the vehicle, the
associated arrival time t and spot speed v are also collected.
The normalized height of the vehicle image is adopted for
representing vehicle length L.
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2) Vehicle Color Recognition: Color is one of the most
essential features for characterizing a vehicle. To reduce the
negative effect of illumination changes, hue–saturation–value
(HSV) color space is adopted to represent the vehicle image.
First, the general RGB color images are converted into HSV
color model-based images. Hue and saturation values are then
exploited for color detection, whereas V (value) information
is separated out from the color space. Second, a 2-D color
histogram C is formed to represent the distribution (frequency)
of colors across a vehicle image. To be more specific, the
hue and saturation channels are divided into 36 and 10 bins,
respectively. Thus, a color feature vector C with 360 elements
is obtained.

3) Vehicle Type Recognition: The vehicle type feature pro-
vides other important information to describe a vehicle. In
this research, the template matching method [25] is utilized
to recognize vehicle type. This method uses the L2 distance
metric to measure the similarity between the vehicle image
and template images. Specifically, vehicles are classified into
six categories. For each category, the corresponding template
image is built for each lane. Finally, the normalized similarity
value between the vehicle image (I) and the kth template image
(T ) is given by

S(k) =

M∑
m=1

N∑
n=1

|I(m,n)− T (m,n)|2

GMN (1)

where G denotes the maximum gray level (255); M and N
are the dimensions of the vehicle image. Thus, the vehicle
type/shape feature S is a 6-D vector that consists of the sim-
ilarity score for each template.

In other words, a vehicle signature, i.e., X = {C, S, L}, is
generated for each detected vehicle, where C and S are the
normalized feature vector and the type (shape) feature vector,
respectively; L denotes the vehicle length. As previously men-
tioned, the associated arrival time t and spot speed v are also
obtained during the detection process. Therefore, the individual
vehicle record can then be represented as (t, v,X).

B. Vehicle Signature Matching Method

For practical implementation, the vehicle records detected at
the upstream station will be stored in the upstream database.
Let Ui = (tUi , v

U
i , X

U
i ) denote the record of the ith upstream

vehicle, where XU
i = {CU

i , SU
i , LU

i } represents the associated
vehicle signatures (i.e., color, type, and length). In this case, the
upstream database is denoted as U = {Ui|i = 1, 2, . . .}, which
could be updated with time propagation. Let D = {Dj |Dj =
(tDj , vDj , XD

j ), j = 1, 2, . . . ,M} denote the M vehicle records
generated at the downstream station during a specific time pe-
riod (e.g., 5-min period). The VRI is to find the corresponding
upstream vehicles for these M downstream vehicles based on
the generated vehicle signatures.

In order to quantify the difference between each pair of
upstream and downstream vehicle signatures, several distance
measures are then incorporated. Specifically, for a pair of sig-

natures (XU
i , XD

j ), the Bhattacharyya distance [26] is utilized
to calculate the degree of similarity between color features, i.e.,

dcolor(i, j) =

[
1 −

360∑
k=1

√
CU

i (k) · CD
j (k)

]1/2

(2)

where k denotes the kth component of the color feature vector.
The L1 distance measure is introduced to represent the differ-
ence between the type feature vectors, i.e.,

dtype(i, j) =

6∑
k=1

∣∣SU
i (k)− SD

i (k)
∣∣ . (3)

The length difference is given by

dlength(i, j) =
∣∣LU

i − LD
j

∣∣ . (4)

However, in practice, it is unnecessary to compute the distance
between all pairs of upstream and downstream vehicle signa-
tures. To rule out the unlikely candidate vehicles at the upstream
database and improve the overall computational efficiency, a
time-window constraint is introduced.

1) Time-Window Constraint: A time window, which sets
the upper and lower bounds of travel time, is introduced to
define the search space (i.e., set of potential upstream matches)
for the downstream vehicle. Given a downstream vehicle j ∈
{1, 2, . . . ,M}, its search space, i.e., S(j), is given by

S(j) =
{
i|tDj − tmax ≤ tUi ≤ tDj − tmin

}
(5)

where tmax and tmin are, respectively, the upper and lower
bounds of the time window. For a sequence of downstream
vehicles {1, 2, . . . ,M}, the set of the candidate upstream ve-
hicles, i.e., S , is defined as

S =

M⋃
j=1

S(j). (6)

Under the static traffic condition, the time window [tmin, tmax]
can be calibrated from the available historical travel time data.

With the associated search space S , the vehicle signature
matching method is equivalent to finding the correspondence
between {1, 2, . . . ,M} and S . Herein we introduce an indicator
variable to represent the matching result, i.e.,

xij =

{ 1, downstream vehicle j matches
upstream vehicle i ∈ S

0, otherwise.
(7)

Recall that for each pair of vehicle signatures, (XU
i , XD

j ),
i ∈ S , j ∈ {1, 2, . . . ,M}, one may compute the distance
(dcolor(i, j), dtype(i, j), dlength(i, j)) based on (2)–(4). A sim-
ple solution (i.e., distance-based method) is then to find the
matching result xij with the minimum feature distance. How-
ever, it should be noted that the vehicle signatures contain
potential noise and are not unique. Therefore, the distance mea-
sure cannot really reflect the similarities between the vehicles.
Instead of directly comparing the feature distances, this study
utilizes the statistical matching method. Based on the calculated
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feature distance (dcolor(i, j), dtype(i, j), dlength(i, j)), a match-
ing probability P (xij = 1|dcolor, dtype, dlength) is provided for
the matching decision-making.

2) Calculation of Matching Probability: The matching
probability, which is also referred to as the posterior probabil-
ity, plays a fundamental role in the proposed VRI system. By
applying the Bayesian rule, one may have

P (xij = 1|dcolor, dtype, dlength)

=
p(dcolor, dtype, dlength|xij = 1)P (xij = 1)

p(dcolor, dtype, dlength)
(8)

where p(dcolor, dtype, dlength|xij = 1) is the likelihood func-
tion; P (xij = 1) is the prior knowledge about the matching
result without observing the detailed vehicle feature data. In
addition, one may also have

p(dcolor, dtype, dlength)

= p(dcolor, dtype, dlength|xij = 1)P (xij = 1)

+ p(dcolor, dtype, dlength|xij = 0)P (xij = 0). (9)

Based on (8) and (9), it is observed that the calculation of
the matching probability is dependent on the deduction of the
likelihood function and the prior probability. In this particular
case, the prior probability is approximated by the historical
travel time distribution, i.e.,

P (xij = 1) =
f (t(i, j))

η
× 0.5 (10)

P (xij = 0) = 1 − f (t(i, j))

η
× 0.5 (11)

where f(.) denotes the historical travel time distribution, t(i, j)
is the time difference between upstream vehicle i and down-
stream vehicle j, and η is the normalizing factor.

The calculation of the likelihood function is completed in
two steps. First, individual statistical models for the three
feature distances are constructed, and the corresponding like-
lihood functions are also obtained (i.e., p(dcolor|xij = 1),
p(dtype|xij = 1), and p(dlength|xij = 1)). Then, a data fusion
rule is employed to provide an overall likelihood function used
in posterior probability (8).

3) Statistical Modeling of Feature Distance: Without loss
of generality, only the probabilistic modeling of color feature
distance is described. In the framework of statistical modeling,
the distance measure is assumed to be a random variable. Thus,
for a pair of color feature vectors (CU

i , CD
j ), the distance

dcolor(i, j) follows a certain statistical distribution. The con-
ditional probability (i.e., likelihood function) of dcolor(i, j) is
then given by

p (dcolor(i, j)|xij) =

{
p1 (dcolor(i, j)) , if xij = 1
p2 (dcolor(i, j)) , if xij = 0

(12)

where p1 denotes the probability density function (pdf) of
distance dcolor(i, j) when color feature vectors CU

i and CD
j

belong to the same vehicle, whereas p2 is the pdf of the distance
dcolor(i, j) between different vehicles. A historical training

data set that contains a number of pairs of correctly matched
vehicles are utilized for estimating pdfs p1 and p2. Likewise,
the likelihood functions for the type and length distances can
be also obtained in a similar manner.

4) Data Fusion Rule: In this paper, the logarithmic opinion
pool (LOP) approach is employed to fuse the individual likeli-
hood functions. The LOP is evaluated as a weighted product of
the probabilities, and the equation is given by

p(dcolor, dtype, dlength|xij)

=
1

ZLOP
p(dcolor|xij)

αp(dtype|xij)
βp(dlength|xij)

γ ,

α+ β + γ = 1 (13)

where fusion weights α, β, and γ are used to indicate the degree
of contribution of each likelihood function, and ZLOP is the
normalizing constant. The weights can be also calibrated from
the training data set. By substituting (9), (10), and (13) into (8),
the desired matching probability can be obtained. For the sake
of simplicity, let Pij denote the matching probability between
upstream vehicle i ∈ S and downstream vehicle j.

5) Bipartite Matching Method: Recall that the basic VRI
system is to find the matching result xij between the down-
stream vehicle set {1, 2, . . . ,M} and its search space S
(assume that there are N candidate vehicles) simultane-
ously based on matching probability {Pij |i = 1, 2, . . . , N ; j =
1, 2, . . . ,M}. The signature matching problem is then formu-
lated as

min
x

N∑
i=1

M∑
j=1

−Pijxij (14)

s.t. xij ∈ {0, 1}, ∀i ∈ S, j ∈ {1, 2, . . . ,M} (15)

N∑
i=1

xij = 1, ∀j ∈ {1, 2, . . . ,M} (16)

M∑
j=1

xij ≤ 1, ∀i ∈ S. (17)

Objective (14) is to maximize the overall matching probabil-
ities between the two sets. Constraint (15) ensures that the
decision variables are binary integers. Constraint (16) requires
that a downstream vehicle can have one matched vehicle at
the upstream station, whereas constraint (17) guarantees that
an upstream vehicle can have, at most, one matched vehicle
at downstream (normally N > M ). This combinatorial opti-
mization problem is equivalent to a minimum-weight bipartite
matching problem, which has already been widely studied
and can be efficiently solved by the successive shortest path
algorithm with computational complexity of O(M2N).

6) Discussion on the Application of the Basic VRI System:
The detailed implementation of the basic VRI for mean travel
time estimation (e.g., from 10:00 A.M. to 10:05 A.M.) is
summarized in the following flowchart (see Fig. 1). First, the
system will initialize time stamp t and check whether a vehicle
is detected at the upstream and/or downstream stations. The
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Fig. 1. Illustrative example of the basic VRI system.

generated upstream vehicle records are stored in the upstream
vehicle database. Once a vehicle is detected at the downstream
station, the candidate vehicle set will be selected based on the
time-window constraint. Meanwhile, the matching probability
for each pair of vehicles is calculated. When current time t
reaches 10:05 A.M., the bipartite matching process based on the
matching probability will begin, and the travel time data can
be obtained. A detailed implementation of this system can be
found in [20]. For the aforementioned framework, the following
four comments should be taken into account.

• First, it is noteworthy that the calculation of the match-
ing probability can be simultaneously performed along
with the vehicle detection process at the downstream
site (i.e., during the 5-min time period). In addition, the
bipartite matching process can be carried out efficiently
as explained before. Thus, the basic VRI can be imple-
mented in real time (which will be explained in detail in
Section V-A).

• Second, it is observed that the basic VRI heavily depends
on the specification of the time window. When a large
time window is applied, search space S would include too
many candidate vehicles, which could lead to a significant
increase in computational time. On the other hand, a rel-
atively smaller time window may enable the algorithm to
find the corresponding vehicle more efficiently; however,
it may also wrongly exclude the correct match from search
space S .

• Third, by using the historical travel time distribution to
approximate the prior knowledge (P (xij = 1)), one may
obtain a more reliable matching probability. In other
words, the basic VRI accepts the predefined time window
and the historical travel time distribution as exogenous
inputs and then perform the vehicle matching method.
Both of these two inputs can be derived from the mean
travel time data (which will be explained in Section IV).

• Fourth, the basic VRI cannot work well under traffic de-
mand and supply uncertainty, as the time window and prior
knowledge may not be well defined. From the perspective
of mean travel time estimation, two novel components

Fig. 2. Travel time for different vehicle types.

(i.e., postprocessing and self-adaptive time window) can
be incorporated to improve the overall performance.

III. POSTPROCESSING TECHNIQUE

Upon completion of the basic VRI system, the raw travel
time for the jth, j ∈ {1, 2, . . . ,M} downstream vehicle during
the evaluation period can be obtained and denoted as trj . Thus,
the mean travel time without postprocessing is given by

μr =
1
M

M∑
j=1

trj . (18)

As the mismatches due to the nonuniqueness of the vehicle sig-
nature are inevitable, the raw travel time may include erroneous
information. Hence, accordingly, the estimator μr may not be
reliable in practice.

A. Stratified Sampling Technique

One natural method is to perform thresholding on the raw
travel time data based on the associated matching probability
in an attempt to rule out the mismatches. However, another
problem (i.e., biased estimation) may arise along with this
thresholding process. It is commonly believed that the travel
time of vehicles of different types (e.g., small cars and long
trucks) is significantly different. Fig. 2 shows the travel time of
different vehicle types fitted by a normal distribution, where ve-
hicle type 1 denotes smaller cars, and vehicle type 2 represents
long trucks. These ground truth travel time data are collected
from a freeway segment in Bangkok, Thailand. The authors also
conducted various hypothesis tests (i.e., t-tests) to validate this
assumption. Thus

H0 : μtype1 = μtype2 vs. Hα : μtype1 �= μtype2

where μtype1 and μtype2 are the mean travel time of small
cars and long trucks, respectively. The results show that the
null hypothesis should be rejected, which means that the travel
times of different types of vehicles are “statistically” different.
In view of this, to further reduce the bias in mean travel time
estimation, the stratified sampling technique [27] based on the
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vehicle type is proposed. Specifically, the raw travel time data
{trj |j = 1, 2, . . . ,M} are divided into two strata (i.e., small-car
stratum and long-truck stratum). The thresholding processes are
independently performed on these two strata. The final mean
travel time μ is then computed as the weighted average of the
mean travel time over all vehicle type strata. The equation is
then given as

μ =

2∑
k=1

Mk

M

⎛
⎝ 1
nk

nk∑
j=1

tjk

⎞
⎠ (19)

where Mk is the number of vehicles of type k, nk denotes the
sample size of vehicles of type k after the thresholding process,
and tjk is the travel time of the jth vehicle of type k after the
thresholding process. The design of the thresholding process
becomes the major concern in the following section.

B. Thresholding Process

For each individual vehicle stratum, the thresholding process
is independently performed. As explained before, one of the out-
puts of basic VRI is the matching result xij , whereas the other
output is the associated matching probability Pij . The overall
idea of thresholding is to apply a certain rule to these outputs
(i.e., xij and Pij) in order to identify the associated erroneous
travel time.

For downstream vehicle j in vehicle stratum k, the matched
upstream vehicle i∗ = {i ∈ S|xij = 1} and the associated
matching probability is Pi∗j . One naive approach to rule out
those mismatches would be to impose a threshold value on
the matching probability. If Pi∗j is greater than the threshold
value, then the travel time data regarding this vehicle j would
be retained for the following stratified sampling [see (19)].
However, in practical implementation, we find that the single
matching probability cannot really reflect the correctness of the
matching. It is quite possible that the other matching probability
Plj ≈ Pi∗j , l ∈ S; l �= i∗, which means that the VRI system
cannot distinguish between the candidate vehicles. To account
for this problem, this study proposes a new measure to represent
the distinctiveness of the vehicle. For this specific vehicle j, the
distinctiveness value is defined as

Pi∗j

P
(2)
j

, P
(2)
j is the second largest matching probability

of {Pij |∀i ∈ S}. (20)

Recall that the proposed bipartite matching method finds the
matching result with the overall maximum probability [see
(14)]. In this case, for a certain downstream vehicle, it may
not be matched to the upstream vehicle with the maximum
likelihood. Therefore, by calculating the distinctiveness value,
one may get more information about the matching result, i.e.,

Pi∗j

P
(2)
j

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

≥ 1, vehicle j matches upstream vehicle with
maximum probability

= 1, vehicle j matches upstream vehicle with
the second largest probability

< 1, vehicle j matches the other ones.

If vehicle j and upstream vehicle i∗ are truly matches, then the
ratio between Pi∗j and P

(2)
j is expected to be relatively larger.

Based on this basic idea, a predefined threshold value τ > 1 is
then imposed on this distinctiveness value, i.e.,⎧⎨

⎩
Pi∗j/P

(2)
j > τ, travel time tjk is retained for

stratified sampling
Otherwise, travel time tjk is discarded.

(21)

By applying rule (21), the erroneous individual travel time data
are expected to be identified and ruled out.

IV. SELF-ADAPTIVE TIME-WINDOW CONSTRAINT

Although the basic VRI is improved to some extent by
imposing the postprocessing technique on the raw travel time
data (see Section III), it still cannot perform well under traffic
demand and supply uncertainty. (Some preliminary results are
presented in Section V.) As mentioned in Section II, the basic
VRI heavily depends on the specification of two exogenous
inputs, i.e., time window and prior knowledge. Therefore, to
further improve the robustness of the VRI system against
potential changes in traffic conditions, these two inputs should
be adjusted accordingly (i.e., self-adaptive).

Intuitively, the time window can be derived from the travel
time data (i.e., travel time distribution). Given the mean value
μt and the variance σ2

t of the travel time distribution during
time period t, a suitable time window [Lbt, Ubt] could be
easily obtained. Assume that the travel time follows normal
distribution N(μt, σt), then the tolerance interval with a 95%
confidence level can be utilized to define the time window, i.e.,

[Lbt, Ubt] = [μt − 1.96σt, μt + 1.96σt]. (22)

Given the coefficient of variation φ, the time-window constraint
can be rewritten as

[Lbt, Ubt] = [(1 − 1.96φ)μt, (1 + 1.96φ)μt] . (23)

Moreover, the prior knowledge can be approximated by the
normal distribution N(μt, φμt). Therefore, both of these two
critical inputs of basic VRI can be derived from the prediction
of the mean travel time in time period t. In other words, the
self-adjusting of the time window and the prior knowledge can
be completed by iteratively predicting the mean travel time for
each time period. In this research, the self-adjusting of the time
window for real-time application involves two major steps as
follows.

• Interperiod adjusting: Based on current traffic information
(e.g., average spot speed) and the mean travel time value
in a previous time period (i.e., obtained from the VRI
system), one may predict the mean travel time value for the
next time period (i.e., interperiod adjusting), from which
the time window is derived. The exponential forecasting
technique integrated with the average spot speed informa-
tion is adopted during the interperiod adjusting process.

• Intraperiod adjusting: Since the nonrecurrent traffic con-
gestion (e.g., caused by incidents) is not predictable, the
additional intraperiod adjustment is required for providing

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on October 29,2020 at 08:05:33 UTC from IEEE Xplore.  Restrictions apply. 



546 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 15, NO. 2, APRIL 2014

an appropriate time window under these extreme circum-
stances. An iterative bipartite matching method is pro-
posed for adjusting the time window, in which the basic
VRI is iteratively solved.

Note that the purpose of predicting the mean travel time is
to derive an appropriate time window, and the accuracy of the
prediction is not our major concern. As a matter of fact, the
estimated mean travel time is obtained from the VRI system
with the postprocessing technique.

A. Interperiod Adjusting

We introduce time series theory for short-term travel time
prediction. As a classical statistical approach, time series fore-
casting has already been evaluated with several other applica-
tions in transportation, such as short-term traffic flow prediction
[28] and traffic speed forecasting [29].

In this paper, the underlying model equation for the mean
travel time data is assumed as

μt = μ∗
t + εt (24)

where μt is the mean travel time calculated from the VRI
system, μ∗

t represents the ground truth data, and εt is the white
noise error term. Our goal is to roughly forecast the mean travel
time in period t+ 1 (i.e., short-term prediction). Therefore, the
exponential smoothing technique integrated with spot speed
information is employed for this particular purpose.

1) Exponential Smoothing Technique: The smoothing (fore-
casting) equation is given as

μ̌t+1 = μ̃t + ϕ(μt − μ̃t) (25)

μ̃t+1 =
V U
t + V D

t

V U
t+1 + V D

t+1

μ̌t+1 (26)

where μ̃t+1 and μ̃t denote the forecasters of the mean travel
time in time period t+ 1 and period t, respectively; ϕ rep-
resents the smoothing parameter that is calibrated from the
historical data; V U

t and V D
t are the average speed at upstream

and downstream stations, respectively, during time period t; and
likewise, V U

t+1 and V D
t+1 are the average speed at upstream and

downstream stations, respectively, during time period t+ 1.
Equation (25) serves as a simple exponential estimation based
on the estimates from previous steps, whereas (26) is a cor-
rection step by utilizing the average spot speed. The rationale
behind (26) is as follows. If the average spot speeds at both
stations (i.e., upstream and downstream) decrease from period
t to period t+ 1, the mean travel time during time period t+ 1
is expected to be larger.

Following the prediction of μ̃t+1, the time window for period
t+ 1 is given by

[Lbt+1, Ubt+1] = [(1 − 1.96φ)μ̃t+1, (1 + 1.96φ)μ̃t+1] . (27)

Based on these recursive formulas, one may be able to predict
the mean travel time and the time window from period to
period (i.e., interperiod adjusting). However, it should be noted
that a “bad” prediction could potentially lead to low matching

Fig. 3. Detailed implementation of the improved VRI system.

accuracy of the VRI system and, hence, unreliable travel time
estimates. Thus, the additional intraperiod adjusting method
should be developed.

B. Intraperiod Adjusting

From time period t+ 1, the predicted time window
[Lbt+1, Ubt+1] and μ̃t+1 are derived during the interperiod
adjusting process and then fed into the basic VRI system, from
which the raw travel time data can be obtained. By performing
the postprocessing technique (e.g., thresholding and stratified
sampling), an improved mean travel time estimator, i.e., μ̂(1)

t+1,
is then calculated. In practice, the initial prediction of the time
window may not be reliable (particularly when an incident hap-
pens), which could significantly decrease the performance of
the VRI system. Thus, it is expected that μ̂(1)

t+1 would not be ac-
curate. In light of this, an iterative process is devised to solve the
basic VRI problems iteratively with different exogenous inputs
(i.e., time window and prior probability). To be more specific, a
new time window, i.e., [(1 − 1.96φ)μ̂(1)

t+1, (1 + 1.96φ)μ̂(1)
t+1], is

calculated based on the estimated mean travel time μ̂(1)
t+1. Then,

the basic VRI and the associated postprocessing technique are
performed again using this new time window. This iterative
process will continue until the relative change in the estimated
mean travel time is sufficiently small. In this research, the error
for stopping tolerance of the convergence is given by∣∣∣μ̂(n)

t+1 − μ̂
(n−1)
t+1

∣∣∣ ≤ τ (28)

where superscript n represents the iteration number, and τ is
the stopping tolerance (see Fig. 3).

To sum up, interperiod adjusting is designed to capture the
traffic dynamics from period to period, whereas intraperiod
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Fig. 4. Test site in Bangkok, Thailand.

adjusting (i.e., iterative process) is introduced to handle the
nonpredictable traffic conditions (e.g., traffic incidents and
bottleneck effect).

V. EXPERIMENTAL RESULTS

To verify the effectiveness and feasibility of the proposed
improved VRI system, various simulation-based experiments
are conducted. In this research, a VISSIM-based simulation
model is devised to simulate freeway system operations under
traffic demand and supply uncertainty (e.g., free flow, conges-
tion, bottleneck effect, and traffic incident).

A. Simulation Model Configuration and Calibration

Before presenting the experimental results, the detailed pro-
cedures for simulation model development and calibration are
introduced. The test site for this research is a 34.9-km-long
three-lane freeway system in Bangkok, Thailand (see Fig. 4). At
each station, a gantry-mounted video camera, which is viewed
in the upstream direction, is installed, and the associated video
records are collected. Two segments are chosen for simulation
model development: 1) a 3.6-km-long closed segment (i.e.,
between 08A and 10A, the green section in Fig. 4); 2) a 4.2-km-
long corridor with on/off-ramps (i.e., between 02A and 04A).
The simulation model is then configured based on the exact
roadway geometric feature, including the length of the segment,
the location of on/off-ramps, and the number of lanes.

To guarantee realistic representations of the simulated exper-
iments, model calibration is required. With the video records
collected at the test site, the individual vehicles can be detected
and manually reidentified across multiple stations. Accordingly,
the ground truth data, such as vehicle counts, traffic demand,
and travel time data, can be obtained for model calibration.
The correctly matched pairs of vehicle images are stored in the
image database for further application.

Upon completion of the simulation model configuration and
calibration, the travel behavior and characteristic of each in-
dividual vehicle (e.g., speed, vehicle type, and arrival time at
each station) can be collected. As the very heart of the proposed
method is the vision-based VRI, a vehicle image, which is
randomly selected from the image database, is assigned to the
vehicle records generated from the simulation model. These

newly created vehicle records are then fed into the improved
VRI system.

To sum up, we simulate all traffic conditions (recurrent and
nonrecurrent traffic congestion) using VISSIM and implement
the proposed method in MATLAB. To be more specific, the
experiments are performed under Windows 7 Home Premium
and MATLAB v7.14 (R2012a) running on a Dell desktop with
an Intel(R) Core(TM) i3 CPU at 3.20 GHz and with 4.00 GB of
memory. It is easily observed that the computational time of the
proposed method largely depends on the number of intraperiod
iteration steps and the CPU time of the basic VRI system
(see Fig. 3). Some preliminary experiments also show that the
average CPU time used by the bipartite matching method in
basic VRI under the free-flow condition is 0.0896 s, whereas
the average CPU time under the congested condition is about
0.3294 s. Therefore, it is reasonable to believe that the improved
VRI system can be implemented for real-time application.

B. Preliminary Comparison Between Basic VRI and
Improved VRI

To conduct the comparison of the basic VRI and the improved
VRI system, a VISSIM-based simulation model is designed for
the closed segment between 08A and 10A (Westbound). During
the 4-h simulation time period, approximately 16 000 pairs of
vehicle records are generated. These vehicles can be roughly
categorized into two types (see Section III): 70% of small
cars and 30% of long vehicles. For this specific segment, the
associated image database, which includes 6280 pairs of vehicle
images, is built up. Therefore, a complete record for vehicle
i can be denoted as (IDi, ti, vi, Xi), where IDi is the unique
identity derived from the simulation model; ti and vi are,
respectively, the arrival time and spot speed of vehicle i; and
Xi represents vehicle feature data extracted from the vehicle
image. Based on these simulation data, the proposed VRI
system is performed and evaluated in terms of the matching
accuracy and the effectiveness of mean travel time estimation.

For the closed freeway segment, each vehicle can be detected
at both stations. Therefore, it is expected that the matching
accuracy should be relatively higher, particularly for a static
time period (i.e., 5-min interval). However, for real-time appli-
cation, the potential changes in traffic conditions would lead
to dramatic decrease/increase in matching accuracy. Fig. 5
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Fig. 5. Effectiveness of the self-adaptive time window.

Fig. 6. Effectiveness of the postprocessing technique under a fixed time
window.

shows the effectiveness of the basic VRI by employing the
self-adaptive time window. As the traffic volume significantly
increases during the second hour of the simulation experiment,
the corresponding traffic condition changes from free-flow to
congested. It is quite obvious that the fixed time window
cannot handle this complicated situation (i.e., significant drop
in matching accuracy from period 12 to 26), whereas the VRI
system with a flexible time window can maintain a relatively
stable matching accuracy (around 60% of matching accuracy).

On the other hand, given the fixed time window, a proper
postprocessing technique (i.e., thresholding and stratified sam-
pling) can still improve the model performance from the travel
time estimation purpose. As shown in Fig. 6, the performance of
the basic VRI significantly decays in the congested case due to
the decrease in matching accuracy. However, it is worth notic-
ing that the accuracy in mean travel time estimation improves a
lot by imposing the postprocessing technique.

C. Performance Evaluation Under Recurrent
Traffic Congestion

To further evaluate the performance of the improved VRI
system (i.e., with postprocessing and self-adaptive time win-
dow) under recurrent traffic congestion (due to exceeding traffic
demand), the three-lane closed segment (between 08A and
10A) is chosen for the test site. The stochastic vehicle inputs
of the VISSIM-based simulation model are defined as

Q =

⎧⎪⎨
⎪⎩

4000 veh/h, 0 ≤ t ≤ 60 min
7000 veh/h, 60 ≤ t ≤ 120 min
8000 veh/h, 120 ≤ t ≤ 180 min
4000 veh/h, 180 ≤ t ≤ 240 min.

(29)

The vehicle inputs are chosen such that all the traffic states
ranging from free-flow to congested can be activated. The
freeway segment operates under the free-flow condition in the
first stage (i.e., first hour). Congestion may be observed when
the vehicle inputs switch to the second stage. Then, the traffic
tends to a steady state of congestion during the following two
hours. In the fourth stage, congestion dissolve will be observed,
and the traffic will gradually be cleared from the freeway
system. Table I shows descriptive statistics for the outputs from
the VISSIM-based simulation model.

To validate the overall performance of the improved VRI
system, we run the method 50 times based on the simulation
outputs. For each run, the vehicle image is randomly selected
from the database and assigned to the vehicle records generated
from the simulation model. The root mean square error (RMSE)
and the mean absolute percentage error (MAPE) are applied as
performance indexes. The equation of the RMSE is given by

RMSE =

√√√√ 1
50

50∑
s=1

I∑
i=1

(
μi(s) − μ∗

i

)2
I

(30)

where μi(s) is the estimate for the ith time period and the
sth run, I indicates the total number of time periods, and μ∗

i

represents the ith ground truth data. The MAPE is calculated as

MAPE =
1

50 × I

50∑
s=1

I∑
i=1

[∣∣∣∣μi(s) − μ∗
i

μ∗
i

∣∣∣∣× 100

]
. (31)

By simple calculation, the RMSE and the MAPE of the im-
proved VRI system for a 5-min aggregation interval are 3.28 s
and 1.0%, respectively, whereas the RMSE of the basic VRI
is 14.61 s. It is observed that the improved VRI clearly out-
performs the basic VRI. Fig. 7 shows the mean travel time
estimates from one experiment. By integrating the average
spot speed information (see Table I), interperiod adjusting can
capture the traffic dynamics well, which could contribute to the
following intraperiod adjusting (i.e., less intraperiod iteration
steps).

D. Performance Evaluation Under Bottleneck Effect

As one of the major causes for freeway traffic congestion,
the freeway bottleneck can arise from many conditions, such as
high merging and diverging demand at on/off-ramps and lane
drops. In this part, we will evaluate the performance of the
proposed method under the bottleneck effect. A 4.6-km-long
three-lane freeway segment between 02A and 04A (see Fig. 4)
is chosen as the test site. As shown in Fig. 8, one two-lane on-
ramp (2 km away from the upstream station) and one two-lane
off-ramp are distributed along this segment. We will ignore the
off-ramp at this location since it does not affect the bottleneck
area. The vehicle inputs at the upstream station are the same as
(29), and we assume the following distribution of vehicle flows.

• 02A to 04A: 100%.
• Off-ramp: 15% of the vehicle flow will exit from the two-

lane off-ramp.
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TABLE I
DESCRIPTIVE STATISTICS FROM SIMULATION OUTPUTS

Fig. 7. Performance of the proposed method with exceeding traffic demand.

Fig. 8. Merge and diverge along the freeway segment.

• On-ramp to the freeway segment: 25% of the vehicle flow
will enter the freeway system through on-ramp (different
flow distributions will be tested in the experiment).

With respect to the above simulation outputs, we run the
proposed method 50 times. Fig. 9 shows the estimation results
from one experiment. Compared with the basic VRI, the pro-
posed method provides more reliable estimates of the mean
travel time. In general, the bottleneck effect cannot be detected
through the average speed at upstream and downstream sta-
tions, which means that interperiod adjusting cannot capture
the traffic dynamics (congestion) well. Therefore, the num-

Fig. 9. Performance of the proposed method (on-ramp vehicle flow distribu-
tion: 25%).

TABLE II
PERFORMANCE OF THE PROPOSED METHOD WITH DIFFERENT

VEHICLE FLOW DISTRIBUTIONS

ber of intraperiod iteration steps would increase accordingly
(see Fig. 9).

Table II also shows the performance of the improved VRI
system under different vehicle flow distributions (i.e., on-ramp
vehicle flow distribution). Since the test site is a freeway
corridor with on/off-ramps, the vehicle arrives at the upstream
station may not necessarily appear at downstream. In addition,
some vehicles may enter this corridor through the on-ramp.
Thus, it is expected that the matching accuracy of the proposed
method is relatively lower. With the increase in the vehicle
flow from on-ramp, the performance would gradually decay.
However, it should be noted that the proposed method can still
perform well against the bottleneck effect.

E. Performance Evaluation Under Nonrecurrent
Traffic Congestion

As the nonrecurrent congestion is largely produced by traffic
incidents, this research will investigate the performance of the
proposed method under traffic incidents. The test site is also a
three-lane closed segment (between 08A and 10A) and with the
same vehicle inputs as (29). To mimic the situation of incident
happening, a parking lot located at lane 1 (2 km away from
the upstream station) is utilized to simulate the incident vehicle
(see Fig. 10). When an incident happens (i.e., incident starts
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Fig. 10. Incident simulation.

Fig. 11. Performance of the proposed method (incident duration: 10 min;
starts from 90 min).

from 90 min), a vehicle would stop in the parking lot, and the
partial route is activated to simulate the driving behavior under
the incident condition.

The proposed algorithm is further tested with different in-
cident durations (e.g., 10, 15, 20, and 30 min). Due to the
unpredictability of the traffic incidents, interperiod adjusting
cannot generate a suitable time window. Therefore, it is ex-
pected that the steps of intraperiod iteration would significantly
increase, particularly when a traffic incident occurs. Fig. 11
shows the mean travel time estimates from one experiment
when the incident duration is 10 min. It is observed that the
mean travel time sharply increases during time period 20 (i.e.,
from 100 to 105 min). Hence, accordingly, the number of
intraperiod iteration steps during this time period significantly
increases. Fig. 12 also illustrates the adjustment of the time-
window constraint for each iteration step. On the other hand,
the basic VRI system cannot adapt well to the sudden changes
in traffic condition when an incident happens (see Fig. 11). Due
to the fixed time-window constraint, the matching accuracy of
basic VRI drops to 0% during time period 20, which eventually
leads to a totally unreliable estimate of the mean travel time.

Parallel to the previous experiments, we also run the method
50 times based on the simulation outputs for different incident
durations (e.g., 10, 20, and 30 min). The detailed estimation
results are shown in Table III. With the increase in incident
durations, the RMSE and the MAPE increase as well. With
the time propagation, it is also observed that the variance of

Fig. 12. Adjustment of the time-window constraint.

TABLE III
PERFORMANCE OF THE PROPOSED METHOD WITH

DIFFERENT INCIDENT DURATIONS

travel time dramatically increases (periods 21 and 22). The
“abnormal” vehicle (seriously delayed by the incident at lane
1) and those normal vehicles may arrive at downstream during
the same time period. In this case, it renders a heavy burden
on the processing of the improved VRI system (e.g., larger
time window, more candidate vehicles, and of course, low
matching accuracy). Therefore, the results shown in Table III
are reasonable.

VI. CONCLUSION AND FUTURE WORKS

This paper aims to develop an improved VRI system based
on the authors’ previous work to estimate the real-time travel
time under traffic demand and supply uncertainty. A self-
adaptive time-window component is introduced into the ba-
sic VRI system to improve its adaptability against potential
significant changes in traffic conditions. In addition, the as-
sociated postprocessing technique (i.e., thresholding based on
the matching probability and stratified sampling based on the
vehicle type) is employed to identify and rule out the erroneous
travel time data. The proposed method is evaluated by conduct-
ing various representative simulation tests. Some performance
indexes such as RMSE and MAPE are also introduced to
quantify the performance of this method.

Further research will be focused on the real-world applica-
tion of this proposed method. It is undeniable that the VIP
systems are subject to the effects of inclement weather (e.g.,
rain and snow) and illumination changes. Under these cir-
cumstances, the quality of the video image will dramatically
decrease and, hence, compromise the effectiveness of vehicle
feature extraction. During evening hours, the vehicle may still
be partially identified by detecting the vehicle headlight and
taillight. However, the color information and vehicle type may
not be obtained from the image. In this case, improving the
external lighting condition at each station may be a promising
way for vehicle feature extraction.
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As validated by the simulated tests, the proposed VRI system
for travel time estimation performs well under different sce-
narios (e.g., recurrent traffic congestion, freeway bottlenecks,
and minor traffic accidents). However, it is noteworthy that the
proposed method may not work well under extremely abnormal
traffic conditions (e.g., severe traffic accident with longer inci-
dent duration). As explained in Section V-E, the longer incident
duration would inevitably lead to a larger time window, low
matching accuracy of the proposed VRI system, and hence an
unreliable travel time estimator. Therefore, future efforts should
be dedicated to overcome these drawbacks. As the lane block-
ing caused by incidents would produce a significant impact on
the travel time experienced by the vehicles at different lanes,
one possible way is then to perform stratified sampling based
on the vehicle lane position.
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