NOTE

Two new xanthones from the roots of *Cratoxylum cochinchinense* and their cytotoxicity

Peeravat Natrsanga¹ · Jongkolnee Jongaramruong² · Kitiya Rassamee³ · Pongpun Siripong³ · Santi Tip-pyang¹

Received: 21 October 2019 / Accepted: 1 December 2019 / Published online: 9 December 2019 © The Japanese Society of Pharmacognosy 2019

Abstract

Two new xanthones namely cratochinone A (1) and cratochinone B (2), along with 16 known xanthones, were isolated from the roots of *Cratoxylum cochinchinense*. Their structures were characterized by spectroscopic methods, especially 1D and 2D NMR as well as comparison with those reported in the literature for known xanthones. All isolated compounds were evaluated for their cytotoxicity against five human cancer cell lines (KB, HeLa S-3, HT-29, MCF-7 and Hep G2 cell lines). Compounds **2**, **5**, and **7** showed significant cytotoxic effects against all cell lines with IC₅₀ values in the range of 0.91–9.93 μ M, while **10** exhibited cytotoxicity against the KB, HeLa S-3, and HT-29 cells with IC₅₀ values of 7.39, 6.07, and 8.11 μ M, respectively. Compound **12** exhibited cytotoxicity against both KB and HeLa S-3 cells with IC₅₀ values of 7.28 and 9.84 μ M.

Keywords Cratoxylum cochinchinense · Hypericaceae · Xanthone · Cytotoxicity

Introduction

Cratoxylum cochinchinense (Lour.) Blume is a shrubby tree belonging to the family *Hypericaceae*, which is widely distributed in Southeast Asia. It has been extensively used in traditional medicine to treat several diseases, including cough, diarrhea, fever, and ulcer. Its young fruit has also used as a food spice [1, 2]. From previous phytochemical investigations of the stems, twigs, bark, roots, and bark of roots of *C. cochinchinense*, diverse chemical constituents such as xanthones, flavonoids, tocotrienols, and triterpenoids have been described [1-7], some of which demonstrated a

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11418-019-01376-7) contains supplementary material, which is available to authorized users.

Santi Tip-pyang Santi.Ti@chula.ac.th

- ¹ Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- ² Department of Chemistry, Faculty of Science, Burapha University, Chonburi 20321, Thailand
- ³ Natural Products Research Section, Research Division, National Cancer Institute, Bangkok 10400, Thailand

number of interesting biological activity such as antioxidants, antimalarial, antibacterial, anti-HIV, and cytotoxic activities [8-13]. Herein, we reported two new xanthone derivatives namely cratochinone A (1) and cratochinone B (2), along with 16 known xanthones (3–18) from the roots of this plant. The structures of all isolated compounds were elucidated using spectroscopic methods, especially 1D and 2D NMR, as well as comparison with those reported in the literature for known xanthones. The cytotoxicity of all isolated compounds was evaluated using the MTT method against five human cancer cell lines.

Results and discussion

The phytochemical investigation of CH_2Cl_2 extract from the roots of *C. cochinchinense* was fractionated through various chromatographic methods to afford two new xanthone derivatives, named cratochinone A (1) and cratochinone B (2), along with 16 known xanthones (Fig. 1), including pancixanthone-A (3) [14], neriifolone A (4) [15], macluraxanthone (5) [16], 10-*O*-methyxlmacluraxanthone (6) [17], pruniflorone G (7) [18], pruniflorone H (8) [18], 6-deoxyjacareubin (9) [19], 9-hydroxycalabaxanthone (10) [20], cratoxylumxanthone A (11) [3], formoxanthone B (12) [21], cochinchinone J (13) [22], cochinchinone A (14) [23], β -mangostin (15) [24], 3,8-dihydroxy-1,2-dimethoxyxanthone (16) [25],

Fig. 1 Structures of 1–18 isolated from the roots of C. cochinchinense

1,5-dihydroxy-6-methoxyxanthone (17) [26] and 1,3,7-trihydroxyxanthone (18) [27]. The structures of all isolated compounds were characterized using spectroscopic method especially, NMR spectroscopies, as well as comparison with the previously reported in the literature.

Cratochinone A (1) was obtained as a yellow gum. Its molecular formula was determined as $C_{20}H_{20}O_6$ by HRESIMS data (m/z 379.1148 [M+Na]⁺, calcd. for $C_{20}H_{20}O_6Na$, 379.1158). The UV spectrum displayed absorption bands at $\lambda_{\rm max}$ 394, 315, and 244 nm. The IR spectrum showed phenolic hydroxyl groups and carbonyl group at 3432 and 1642 cm⁻¹. The ¹H NMR spectrum displayed a signal for aromatic proton at $\delta_{\rm H}$ 6.40 (1H, *s*, H-2) and two ortho-coupled aromatic protons at $\delta_{\rm H}$ 6.99 (1H, *d*, *J*=8.8, H-7) and $\delta_{\rm H}$ 7.94 (1H, *d*, *J*=8.8, H-8). In the HMBC spectrum (Table 1, Fig. 2), three aromatic protons were located at C-2, C-7, and C-8 by the correlation of $\delta_{\rm H}$ 6.40 to $\delta_{\rm C}$ 166.1 (C-1), $\delta_{\rm C}$ 162.8 (C-3), $\delta_{\rm C}$ 114.2 (C-4), and

Table 1 1 H , 13 C and HMBC NMR data of 1 and 2 in CDCl₃ (400 MHz for 1 H, 100 MHz for 13 C)

Position		1			2	2	
	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	δ_{C}	HMBC correlations	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	δ_{C}	HMBC correlations	
1	_	166.1	_	_	163.9	-	
2	6.40, (<i>s</i>)	96.4	C-1, C-3, C-4, C-9a	_	111.9	-	
3	-	162.8	-	_	159.3	-	
4	-	114.2	-	6.35, (<i>s</i>)	89.2	C-2, C-3, C-4a, C-9a	
5	-	134.5	-	6.84, (<i>s</i>)	101.9	C-6, C-7, C-8a, C-10a	
6	-	155.4	-	_	155.4	-	
7	6.99, (<i>d</i> , 8.8)	113.5	C-5, C-6, C-8a	_	143.0	-	
8	7.94, (<i>d</i> , 8.8)	122.7	C-6, C-9,C-10a	_	137.8	-	
9	_	181.2	_	_	183.2	-	
4a	_	157.6	_	_	155.7	-	
8a	_	115.1	-	_	112.2	-	
9a	_	103.8	-	_	103.3	-	
10a	_	150.3	-	_	154.9	-	
1'	_	41.7	-	3.35, (<i>d</i> , 7.2)	21.8	C-1, C-2, C-3, C-2', C-3'	
2'	6.30, (dd, 17.2, 10.7)	151.0	C-4, C-3', C-4', C-5'	5.23, (<i>m</i>)	122.7	C-4′, C-5′	
3'	4.85, (d, 17.2)	108.0	C-1', C-2'	_	131.6	-	
	4.85, (d, 10.7)	108.0					
4'	1.70, (<i>s</i>)	30.4	C-4, C-1', C-2', C-5'	1.68, (<i>s</i>)	25.4	C-2', C-5'	
5'	1.70, (<i>s</i>)	30.2	C-4, C-1', C-2', C-4'	1.79, (<i>s</i>)	18.6	C-2', C-4'	
1"	-	-	_	4.10, (<i>d</i> , 7.2)	26.2	C-7, C-8, C-8a, C-2", C-3"	
2"	-	-	_	5.26, (<i>m</i>)	125.4	C-9″	
3″	-	-	_	_	135.7	-	
4''	-	-	_	2.03, (<i>m</i>)	32.3	C-3", C-5"	
5″	_	-	_	2.03, (<i>m</i>)	27.2	C-3", C-5"	
6''	_	-	-	5.10, (<i>m</i>)	123.6	C-5", C-8", C-10"	
7″	-	-	_	_	132.1	-	
8″	_	-	-	1.83, (<i>s</i>)	23.4	C-6", C-7", C-10"	
9″	_	-	-	1.68, (<i>s</i>)	14.5	C-2", C-3", C-4"	
10''	_	-	-	1.67, (<i>s</i>)	18.6	C-6", C-7", C-8"	
1-OCH ₃	3.96, (<i>S</i>)	56.0	C-1	3.90, (<i>s</i>)	56.3	C-1	
3-OH	_	-	-	_	-	-	
5-OCH ₃	3.84, (<i>S</i>)	62.8	C-5				
6-OH	_	-	-	-	_	-	
7-OH	-	-	_	_	-	-	
7-OCH ₃	-	-	-	3.80, (<i>s</i>)	61.9	C-7	

Fig. 2 Key: HMBC (arrow curves) and COSY (bold lines) correlations of $\mathbf{1}$ and $\mathbf{2}$

 $\delta_{\rm C}$ 103.8 (C-9a), $\delta_{\rm H}$ 6.99 to $\delta_{\rm C}$ 134.5 (C-5), $\delta_{\rm C}$ 155.4 (C-6) and $\delta_{\rm C}$ 115.1 (C-8a), and $\delta_{\rm H}$ 7.94 to C-6, $\delta_{\rm C}$ 181.29 (C-9), and $\delta_{\rm C}$ 150.3 (C-10a), respectively. In addition, the splitting pattern and coupling constants of three olefinic protons at $\delta_{\rm H}$ 6.30 (*dd*, J=17.2, 10.7 Hz, H-2'), 4.85 (*d*, J=17.2 Hz, H-3'a), and 4.85 (*d*, J=10.7 Hz, H-3'b) indicated the presence of a terminal alkene as a part of a 1,1-dimethylallyl group which also displayed two singlets for methyl groups at $\delta_{\rm H}$ 1.70 (each 3H, *s*, H-4' and H-5'). The correlations of $\delta_{\rm H}$ 6.30 to C-4, two methyl protons at $\delta_{\rm H}$ 1.70 to $\delta_{\rm C}$ 114.2 (C-4) and $\delta_{\rm C}$ 151.0 (C-2'), confirming that a 1,1-dimethylallyl group was connected at C-4 of ring A. The ¹H and ¹³C NMR spectroscopic data (Table 1) were shown to be similar to those of the known xanthone, isocudraniaxanthone A [28], except that the hydroxyl groups at C-1 and C-5 of isocudraniaxanthone A were substituted by methoxy groups. On the basis of HMBC cross peak of 1 (Fig. 2), the methoxy protons at $\delta_{\rm H}$ 3.96 (3H, *s*, 1-OCH₃) and 3.84 (3H, *s*, 5-OCH₃) showed a cross peak with C-1 of ring A and C-5 of ring B, respectively. Thus, the completed assignment of cratochinone A was determined as **1**.

Cratochinone B (2) was obtained as a brown gum. A molecular formula of $C_{30}H_{36}O_6$ was suggested by HRESIMS data ($m/z = 493.2582 \text{ [M + H]}^+$, calcd for $C_{30}H_{37}O_6$, 493.2590).

The UV spectrum displayed absorption bands at λ_{max} at 369, 315, 269, and 245 nm. The IR data indicated the presence of a xanthone skeleton at 3431, 1639, and 1610 cm⁻¹. The ¹H NMR spectrum displayed two aromatic protons at δ_{H} 6.35 (1H, *s*, H-4) and δ_{H} 6.84 (1H, *s*, H-5). The presence of a prenyl group was indicated by signals for an olefinic proton at δ_{H} 5.23 (1H, *m*, H-2'), methylene protons at δ_{H} 3.35 (2H, *d*, *J*=7.2 Hz, H-1'), and two methyl groups at δ_{H} 1.68 (3H, *s*, H-4') and 1.79 (3H, *s*, H-5'). The correlation of δ_{H} 3.35 to δ_{C} 163.9 (C-1), δ_{C} 111.9 (C-2) and δ_{C} 159.3 (C-3) in the HMBC spectrum (Table 1, Fig. 2) established that the prenyl unit was identified from the resonances of two olefinic protons at

 $\delta_{\rm H}$ 5.26 (1H, *m*, H-2") and 5.10 (1H, *m*, H-6"), three methylene protons at $\delta_{\rm H}$ 4.10 (2H, *d*, *J* = 7.2 Hz, H-1"), $\delta_{\rm H}$ 2.03 (4H, m, H-4" and H-5"), and three methyl groups at $\delta_{\rm H}$ 1.83 (3H, *s*, H-10"), 1.68 (3H, *s*, H-8"), and 1.67 (3H, *s*, H-9"), which were also corroborated by the observed HMBC data (Fig. 2). The ¹H and ¹³C NMR spectroscopic data (Table 1) were shown to be similar to those of the known xanthone, norcowanin [29], except that the hydroxyl group at C-1 was replaced by a methoxy group. In the HMBC correlations of **2** (Fig. 2), the methoxy proton at $\delta_{\rm H}$ 3.90 (3H, *s*, 1-OCH₃) showed a cross peak with C-1. The remaining signals of methoxy proton at $\delta_{\rm H}$ 3.80 (3H, *s*, 7-OCH₃), which were accommodated at $\delta_{\rm C}$ 143.0 (C-7) of ring B were based on HMBC cross peak. From the above evidence, cratochinone B had the structure **2**.

Previous reports have revealed that xanthones isolated from plants, especially in the genus *Cratoxylum*, showed remarkable cytotoxicity against several cancer cell lines [2, 9, 21, 30-32]. Therefore, all isolated xanthones (1–18) were first evaluated in vitro for their cytotoxicity against KB and HeLa S-3 cells. The active compounds (2, 5, 7, 10, and 12) with IC₅₀ values lower than 10 μ M toward these two cancer cell lines were further evaluated against three cell lines, including HT-29, MCF-7, and Hep G2 cells. The results of cytotoxicity were shown in Table 2. Most of the tested compounds showed moderate to weak cytotoxicity, except 2, 5,

Compounds	$IC_{50} (\mu M) \pm SD$							
	KB	Hela S-3	HT-29	MCF-7	Hep G2			
1	42.17 ± 2.83	58.41 ± 0.51	N.T	N.T	N.T			
2	1.54 ± 0.02	0.91 ± 0.21	7.04 ± 0.83	1.76 ± 0.06	1.72 ± 0.10			
3	>100	>100	N.T	N.T	N.T			
4	10.14 ± 0.10	12.62 ± 0.85	N.T	N.T	N.T			
5	1.60 ± 0.02	1.85 ± 0.19	8.58 ± 0.14	1.18 ± 0.04	9.57 ± 0.74			
6	53.01 ± 4.88	35.12 ± 2.63	N.T	N.T	N.T			
7	2.04 ± 0.04	2.681 ± 0.10	9.93 ± 0.52	2.54 ± 0.22	4.43 ± 0.56			
8	46.11 ± 1.17	40.32 ± 2.62	N.T	N.T	N.T			
9	28.01 ± 0.84	13.42 ± 0.91	N.T	N.T	N.T			
10	7.39 ± 0.15	6.07 ± 0.59	8.11 ± 0.43	13.67 ± 0.31	27.72 ± 0.61			
11	26.44 ± 2.61	10.50 ± 0.86	N.T	N.T	N.T			
12	7.28 ± 0.56	9.84 ± 0.45	24.14 ± 0.7	19.63 ± 1.43	19.96 ± 0.94			
13	42.18 ± 1.60	59.25 ± 0.14	N.T	N.T	N.T			
14	28.96 ± 0.10	20.54 ± 0.83	N.T	N.T	N.T			
15	24.99 ± 3.16	14.383 ± 2.67	N.T	N.T	N.T			
16	>100	>100	N.T	N.T	N.T			
17	>100	>100	N.T	N.T	N.T			
18	>100	>100	N.T	N.T	N.T			
Doxorubicin	0.22 ± 0.01	0.15 + 0.05	0.59 + 0.03	1.29 ± 0.02	0.99 ± 0.17			

 Table 2
 Cytotoxicity of isolated compounds (1–18) from the roots of *C. cochinchinense*

 $IC_{50} \le 10 \ \mu\text{M} = \text{good activity}, 10 \ \mu\text{M} < IC_{50} \le 30 \ \mu\text{M} = \text{moderate activity}, 30 \ \mu\text{M} < IC_{50} \le 100 \ \mu\text{M} = \text{weak}$ activity, $IC_{50} > 100 \ \mu\text{M} = \text{inactive}$

N.T. the compounds were not tested

and **7**, which showed significant cytotoxic activities against five human cancer cell lines with IC_{50} values in the range of 0.91–9.93 µM. Compound **10** exhibited potent cytotoxicity toward KB, HeLa S-3, and HT-29 cells with IC_{50} values of 7.39, 6.07, and 8.11 µM, respectively. Whereas **12** showed good cytotoxicity toward both KB and HeLa S-3 cells with IC_{50} values of 7.28 and 9.84 µM. Compounds **3**, **16**, **17**, and **18** showed inactive cytotoxicity toward both KB and HeLa S-3 cells with IC_{50} values more than 100 µM. The SAR studied data (Fig. 1; Table 2) of xanthones suggest that the geranyl group at C-8 [33], the ortho hydroxy group at C-5 and C-6, and the 1,1-dimethylallyl group at C-4 [34], might improve the cytotoxicity as inferred from the comparison of their cytotoxicity of xanthones **1–18**.

Experimental

General experimental procedures

NMR spectra were recorded on Bruker 400 AVANCE spectrometer. HRESIMS spectra were obtained using a Bruker MICROTOF model mass spectrometer. The UV–Visible absorption spectra were recorded on a UV-2550 UV–Vis spectrometer (Shimadzu, Kyoto, Japan). The IR spectra were measured on a Nicolet 6700 FT-IR spectrometer using KBr discs. Silica gel 60 Merck cat. Nos. 7734 and 7749 was used as absorbent for open column chromatography (CC) and radial chromatography (TLC) was performed on precoated Merck silica gel 60 F_{254} plates (0.25 mm thick layer) and visualized with 10% H_2SO_4 –MeOH solution.

Plant material

The roots of *C. cochinchinense* were collected in Lumpang Province, northern Thailand, in April 2018 and identified by Dr.Suttira Sedlak, a botanist at the Walai Rukhavej Botanical Research Institute, Mahasarakham University and a specimen retained as a reference (khumkratok no. 01–18).

Extraction and isolation

The roots of *C. cochinchinense* (7.6 kg) were extracted with CH_2Cl_2 (3×5 L) at room temperature for 1 week. The combined extract was evaporated to give a yellowish brown gum (174.95 g) was subjected to silica gel CC using a system of hexane (2 L), gradient of hexane– CH_2Cl_2 90, 80, 60, and 20% (5 L) and gradient of CH_2Cl_2 –MeOH 95, 90, 80, 60, and 40% (5 L) yielding eight fractions (A–G). Fraction A (13 g) was subjected to silica gel CC using a system of 50 and 10% hexane– CH_2Cl_2 (800 mL) and further purified by chromatotron with a system of 90% hexane–EtOAc (500 mL) to yield **2** (1.7 mg), **6** (3.0 mg), and **10** (2.0 mg). Fraction

B (8.0 g) was subjected to silica gel CC using isocratic elution of 30% hexane-CH₂Cl₂ (1 L) and using a system of 100, 95, and 90%, CH₂Cl₂-MeOH (1 L). Then it was also applied to a Sephadex LH-20 CC eluted with a system of 50% CH₂Cl₂-MeOH (900 mL each) followed by chromatotron with a system of 10% hexane-EtOAc (500 mL each) to give 1 (1.1 mg), 5 (7.8 mg), 15 (6.67 mg), respectively. Fraction C (4.4 g) was purified by Sephadex LH-20 CC with a system of 50% CH₂Cl₂-MeOH (500 mL) and further applied to a chromatotron with a system of 80% hexane-EtOAc (200 mL) to furnish 3 (2.0 mg) and 4 (8.0 mg). Fraction D (8.5 g) was purified by Sephadex LH-20 column eluted with 50% CH₂Cl₂-MeOH (2 L) then purified by chromatotron with a system of 40% hexane-CH₂Cl₂ (200 mL) to obtain compounds 8 (4.2 mg) and 11 (4.5 mg). Fraction E (3.0 g) was subjected to Sephadex LH-20 CC eluted with a system of 50% CH₂Cl₂-MeOH (400 mL each) and it was also purified by chromatotron with a system of 80% hexane-CH₂Cl₂ (300 mL) to afford compounds 7 (3.0 mg), 12 (2.5 mg), and 17 (3.2 mg). Fraction F (5.8 g) was separated by silica gel CC using isocratic elution of 50% hexane-CH₂Cl₂ (1 L) and using a system of 100, 95, and 90%, CH₂Cl₂-MeOH (1 L) to give compounds 9 (3.64 mg) and 13 (2.5 mg). Then it was also applied to chromatotron with a system of 80% hexane-CH₂Cl₂ (300 mL) to obtain compound 18 (4.3 mg). Finally, fraction G (2.2 g) was subjected to silica gel CC elution with 70% hexane-EtOAc (1L) and further applied to a chromatotron with 90% hexane-EtOAc (300 mL) to yield compounds 9 (3.7 mg), 14 (3.6 mg), and 16 (4.9 mg).

Cratochinone A: yellow gum; UV (CHCl₃) λ_{max} (log ε): 394 (3.5), 315 (4.0), and 244 (4.2) nm, IR ν_{max} (KBr): 3432 and 1642 cm⁻¹; ¹H (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectroscopic data, see Table 1; HRESIMS *m/z* 379.1148 [M+Na] ⁺, (calcd. for C₂₀H₂₀O₆Na, 379.1158).

Cratochinone B: brown gum; UV (CHCl₃) λ_{max} (log ε): 369 (3.5), 315 (4.0), 269 (4.2), 245 (2.8) nm, IR ν_{max} (KBr): 3431, 1639, 1610 cm⁻¹; ¹H (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectroscopic data, see Table 1; HRESIMS *m/z* 493.2582 [M+H]⁺, (calcd for C₃₀H₃₇O₆, 493.2590).

Cytotoxicity assay

The isolated compounds (1-18) were evaluated for their cytotoxicity against cervix adenocarcinoma (HeLa S3), epidermoid carcinoma (KB), adenocarcinoma (HT-29), breast adenocarcinoma (MCF-7), and hepatocellular carcinoma (Hep G2) using an MTT colorimetric method [35]. Doxorubicin was used as the reference substance. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (Sigma Chemical Co., USA) was dissolved in saline to make a 5 mg/ mL stock solution. Cancer cells (3×10^3 cells) suspended in

100 µg/wells of MEM medium containing 10% fetal calf serum (FCS, Gibco BRL, Life Technologies, NY, USA) were seeded onto a 96-well culture plate (Costar, Corning Incorporated, NY 14,831, USA). After 24 h of pre-incubation at 37 °C in a humidified atmosphere of 5% CO₂/95% air to allow cellular attachment, various concentrations of test solution (10µL/well) were added and these were then incubated for 48 h under the above conditions. At the end of the incubation, 10µL of tetrazolium reagent was added into each well followed by further incubation at 37 °C for 4 h. The supernatant was decanted and DMSO (100µL/well) was added to allow Formosan solubilization. The optical density (OD) of each well was detected using a microplate reader at 550 nm and for correction at 595 nm. Each determination represented the average means of six replicates. The 50% inhibition concentration (IC₅₀value) was determined by curve fitting.

Acknowledgements The authors are grateful to the 90th anniversary of Chulalongkorn University Fund (Rat-chadaphisek-somphot Endowment Fund) for financial support. We also thank Dr. Suttira Sedlak, Walai Rukhavej Botanical Research Institute, Mahasarakham University, Mahasarakham 44000, Thailand for identification and deposition of the plant material.

References

- 1. Laphookhieo S, Maneerat W, Buatip T, Keith JK (2008) New xanthones from *C. cochinchinense*. Can J Chem 86:757–760
- 2. Laphookhieo S, Maneerat W, Koysomboon S (2009) Antimalarial and cytotoxic phenolic compounds from *Cratoxylum maingayi* and *Cratoxylum cochinchinense*. Molecules 14:1389–1395
- Phuwapraisirisan P, Udomchotphruet S, Surapinit S, Tip-Pyang S (2006) Antioxidant xanthones from *Cratoxylum cochinchinense*. Nat Prod Res 20:1332–1337
- Duan YH, Dai Y, Wang GH, Chen LY, Chen HF, Zeng DQ, Li YL, Yao XS (2015) Bioactive prenylated xanthones from the stems of *Cratoxylum cochinchinense*. J Asian Nat Prod Res 17:519–531
- Udomchotphruet S, Phuwapraisirisan P, Sichaem J, Tip-pyang S (2012) Xanthones from the stems of *Cratoxylum cochinchinense*. Phytochemistry 17:148–151
- Bennett GJ, Harrison LJ, Sia GL, Sim KY (1993) Xanthones from guttiferae. Phytochemistry 23:1245–1251
- Nguyen LHD, Harrison LJ (1998) Triterpenoid and xanthone constituents of *Cratoxylum cochinchinense*. Phytochemistry 50:471–476
- Rukachaisirikul V, Phainuphong P, Sukpondma Y, Phongpaichit S, Taylor WC (2005) Cytotoxic and Anti-HIV-1 Caged xanthones from the resin and fruits of *Garcinia hanburyi*. Planta Med 71:165–170
- Laphookhieo S, Syers JK, Kiattansakul R, Chantrapromma K (2006) Cytotoxic and antimalarial prenylated xanthones from *Cratoxylum cochinchinense*. Chem Pharm Bull 54:745–747
- Reutrakul V, Anantachoke N, Pohmakotr M, Jaipetch T, Sophasan S, Yoosook C, Kasisit J, Napaswat C, Santisuk T, Tuchinda P (2007) Antibacterial caged-tetraprenylated xanthones from the stem bark of *Garcinia scortechinii*. Planta Med 73:33–40
- 11. Sukandar ER, Kaennakam S, Rassamee K, Ersam T, Siripong P, Tip-pyang S (2019) Tetrandraxanthones A–I, Prenylated and

geranylated xanthones from the stem bark of *Garcinia tetrandra*. J Nat Prod 82:1312–1318

- Li ZP, Lee HH, Uddin Z, Song YH, Park KH (2018) Caged xanthones displaying protein tyrosine phosphatase 1B (PTP1B) inhibition from *Cratoxylum cochinchinense*. Bioorg Chem 78:39–45
- 13. Li ZP, Song YH, Uddin Z, Wang Y, Park KH (2018) Inhibition of protein tyrosine phosphatase 1B (PTP1B) and α -glucosidase by xanthones from *Cratoxylum cochinchinense*, and their kinetic characterization. Bioorg Med Chem 26:737–746
- Chihiro I, Yoshiaki M, Sundar K, Hiroshi F (1996) A Novel dibenzofuran and two new Xanthones form *Calophyllum panciflorum*. Chem Pharm Bull 44:441–443
- 15. Nuangnaowarat W, Isaka M, Phupong W (2010) New xanthones from the barks of *Cratoxylum sumatranum ssp. neriifolium*. Heterocycles 81:2335–2341
- Iinuma M, Tosa H, Tanaka T, Yonemori S (1993) Two xanthones from root bark of *Calophyllum inophyllum*. Phytochemistry 35:527–532
- Gunasekera SP, Selliah S, Sultanbawa MUS (1975) Chemical investigation of ceylonese plants. Part XV. Extractives of *Kayea stylosa* Thw. (Guttiferae). J Chem Soc Perkin Trans 1(16):1539–1544
- Boonnak N, Karalai C, Chantrapromma S, Ponglimanont C, Fun HK, Kanjana-Opas A, Laphookhieo S (2006) Bioactive prenylated xanthones and anthraquinones from *Cratoxylum formosum ssp. pruniflorum*. Tetrahedron 62:8850–8859
- Kawamura F, Muhamud A, Hashim R, Sulaiman O, Ohara S (2012) Two Antifungal xanthones from the heartwood of *Calophyllum symingtonianum*. Jpn Agric Res Q 46:181–185
- Sen AK, Sarkar KK, Mazumder PC, Banerji N, Uusvuori R, Hase TA (1980) A xanthone from *Garcinia mangostana*. Phytochemistry 19:2223–2225
- Boonsri S, Karalai C, Ponglimanont C, Kanjana-Opas A, Chantrapromma K (2006) Antibacterial and cytotoxic xanthones from the roots of *Cratoxylum formosum*. Phytochemistry 67:723–727
- 22. Boonnak N, Karalai C, Chantrapromma S, Ponglimanont C, Fun HK, Kanjana-Opas A, Chantrapromma K, Kato S (2009) Anti-Pseudomonas aeruginosa xanthones from the resin and green fruits of *Cratoxylum cochinchinense*. Tetrahedron 65:3003–3013
- Mahabusarakam W, Nuangnaowarat W, Taylor WC (2006) Xanthone derivatives from *Cratoxylum cochinchinense* roots. Phytochemistry 67:470–474
- Sim WC, Lain GC, Aspollah SM (2011) Alpha-mangostin and beta-mangostin from *Cratoxylum laucum*. Res J Chem Environ 15(2):62–66
- Marston A, Hamburger M, Sordat-Diserens I, Msonthia DJ, Hostettmann K (1993) Xanthones from *Polygala nyikensis*. Phytochemistry 33:809–812
- Dharmaratne HRW, Napagoda MT, Tennakoon SB (2005) Xanthones from roots of *Calophyllum thwaitesii* and their bioactivity. Nat Prod Res 23:539–545
- Chan WL, Leung C, Yeung H, Xiao H, Xiao P (1998) Xanthones and flavonoids of *Polygala caudata*. Pharm Pharmacol Commun 4:415–417
- Hay AE, Aumond MC, Mallet S, Dumontet V, Litaudon M, Rondeau D, Richomme P (2004) Antioxidant Xanthones from *Garcinia vieillardii*. J Nat Prod 67:707–709
- 29. Pattalung PN, Thongtheeraparp W, Wiriyachitra P, Taylor WC (1994) Xanthones of *Garcinia cowa*. Planta Med 60:365–368
- Pattanaprateeb P, Ruangrungsi N, Cordell GA (2005) Cytotoxic constituents from *Cratoxylum arborescens*. Planta Med 71:181–183
- Ren Y, Matthew S, Lantvit DD, Ninh TN, Chai H, Fuchs JR, Soejarto DD, Carcache de Blanco EJ, Swanson SM, Kinghorn AD (2011) Cytotoxic and NF-κB inhibitory constituents of the stems

- 32. Seo EK, Kim NC, Wani MC, Wall ME, Navarro HA, Burgess JP, Kawanishi K, Kardono LBS, Riswan S, Rose WC, Fairchild CR, Farnsworth NR, Kinghorn AD (2002) Cytotoxic Prenylated Xanthones and the Unusual Compounds Anthraquinobenzophenones from *Cratoxylum sumatranum*. J Nat Prod 65:299–305
- Kaennakam S, Siripong P, Tip-Pyang S (2015) Kaennacowanols A-C, three new xanthones and their cytotoxicity from the roots of *Garcinia cowa*. Fitoterapia 102:171–176
- Kaennakam S, Mudsing K, Rassamee K, Siripong P, Tip-Pyang S (2019) Two new xanthones and cytotoxicity from the bark of *Garcinia schomburgkiana*. J Nat Med 73:257–261

35. Kongkathip N, Kongkathip B, Siripong P, Sangma C, Luangkamin S, Niyomdecha M, Pattanapa S, Piyaviriyagul S, Kongsaeree P (2003) Potent antitumor activity of synthetic 1,2-Naphthoquinones and 1,4-Naphthoquinones. Bioorg Med Chem 11:3179–3191

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.