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Abstract

For humans and rodents, duodenum is a very important site of calcium absorption since
it is exposed to ionized calcium released from dietary complexes by gastric acid. Cal-
cium traverses the duodenal epithelium via both transcellular and paracellular pathways
in a vitamin D-dependent manner. After binding to the nuclear vitamin D receptor, 1,25-
dihydroxyvitamin D3 [1,25(OH)2D3] upregulates the expression of several calcium trans-
porter genes, e.g., TRPV5/6, calbindin-D9k, plasma membrane Ca2+-ATPase1b, and NCX1,
thereby enhancing the transcellular calcium transport. This action has been reported to
be under the regulation of parathyroid–kidney–intestinal and bone–kidney–intestinal
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axes, in which the plasma calcium and fibroblast growth factor-23 act as negative feed-
back regulators, respectively. 1,25(OH)2D3 also modulates the expression of tight
junction-related genes and convective water flow, presumably to increase the para-
cellular calcium permeability and solvent drag-induced calcium transport. However,
vitamin D-independent calcium absorption does exist and plays an important role in
calcium homeostasis under certain conditions, particularly in neonatal period, preg-
nancy, and lactation as well as in naturally vitamin D-impoverished subterranean
mammals.

1. INTRODUCTION

Calcium is fundamental to a number of cellular and organ functions,

such as intracellular signal transduction, neurotransmitter release, muscle

contraction, cardiac contractility, and bone metabolism. In mammals,

�99% of total body calcium is stored in bone mainly as hydroxyapatite

nanocrystals and to a smaller extent as amorphous calcium phosphate and

free-ionized calcium in bone extracellular fluid. Extraosseous calcium

(�1% of total body calcium) exists in threemajor forms, i.e., albumin-bound

form, free-ionized calcium, and calcium complexes with phosphate or sul-

fate. A drastic change in the plasma calcium concentration, either a decrease

(hypocalcemia) or increase (hypercalcemia), is lethal; therefore, calcium

level is tightly regulated by several hormones, which are three classical

calcium-regulating hormones, namely parathyroid hormone (PTH), 1,25-

dihydroxyvitamin D3 [1,25(OH)2D3], and calcitonin, as well as some other

endocrine or paracrine factors [e.g., estrogen, prolactin, insulin-like growth

factor (IGF)-1, and fibroblast growth factor (FGF)-23]. Besides plasma cal-

cium level, body calcium metabolism as a whole is also controlled by these

calcium-regulating hormones to assure that dietary calcium is adequately

absorbed into the body, properly stored in bone, while the excess is excreted

via the kidney. Under certain conditions, for instance pregnancy and lacta-

tion, a large amount of calcium is utilized for fetal growth and milk produc-

tion, respectively; therefore, the intestinal calcium absorption is markedly

enhanced to match a high-calcium demand (Charoenphandhu et al., 2009).

Both humans and rodents respond to 1,25(OH)2D3 treatments by

raising calcium absorption by 200–300% (Fleet, Eksir, Hance, & Wood,

2002; Kutuzova et al., 2008). However, mild-to-moderate vitamin

D insufficiency rarely diminishes intestinal calcium absorption since PTH

effectively induces conversion of 25-hydroxyvitamin D3 [25(OH)D3] into
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1,25(OH)2D3 for stimulation of calcium absorption (Need & Nordin,

2008). It is noteworthy that simple vitamin D3 supplement [not 1,25

(OH)2D3 supplement] cannot increase calcium absorption in either vitamin

D-deficient or rachitic volunteers (Gallagher, Jindal, & Smith, 2014;

Thacher & Abrams, 2010). Dietary calcium traverses the intestinal epithe-

lium by two major pathways, i.e., transcellular and paracellular pathways

in a 1,25(OH)2D3-dependent manner. Both humans and rodents respond

to 1,25(OH)2D3 treatments by raising calcium absorption by 200–300%

(Fleet et al., 2002; Kutuzova et al., 2008). In the transcellular pathway,

free-ionized calcium diffuses across the apical plasma membrane, cytoplasm,

and then the basolateral membrane before entering the interstitial fluid and

blood circulation. Luminal calcium also moves paracellularly across the tight

junction into the lateral intercellular space—also known as paracellular

space—before entering the interstitium.

In humans and rodents, although both calcium transport mechanisms

take place in all segments of the small intestine, the transcellular calcium

transport is predominant in the proximal part, particularly the duodenum,

and is of importance during low-calcium intake (Armbrecht, Zenser,

Gross, & Davis, 1980). Regular diet without dairy products is generally con-

sidered low normal calcium diet, which necessitates the presence of an active

uphill transport mechanism. Paracellular calcium transport, on the other

hand, is present along the entire length of the small intestine. However,

it is believed that a considerable amount of lumen-to-plasma paracellular

calcium flux also occurs in the duodenum since it is exposed to high luminal

concentration of free-ionized calcium, which is liberated from insoluble

complexes by gastric acidic environment (Kopic & Geibel, 2013),

especially after high-calcium meal or oral calcium supplementation. Our

investigation has provided evidence that the paracellular calcium flux in

the rat duodenum is much greater than the transcellular calcium flux (up

to 10:1 when luminal calcium >5 mmol/L) (Charoenphandhu, Tudpor,

Pulsook, & Krishnamra, 2006).

2. SOURCES OF 1,25(OH)2D3 FOR STIMULATION
OF DUODENAL CALCIUM TRANSPORT

There are two possible sources of 1,25(OH)2D3, i.e., from plasma and

de novo synthesis in the intestinal cells, the latter of which is also known as

intracrine 1,25(OH)2D3 (Balesaria, Sangha, & Walters, 2009; Kopic &

Geibel, 2013). Plasma 1,25(OH)2D3 is predominantly synthesized in the

4091,25(OH)2D3 and Duodenal Calcium Absorption



renal proximal tubular cells by 25(OH)D3 1α-hydroxylase (CYP27B1)

(Kopic & Geibel, 2013). Regarding the intracrine 1,25(OH)2D3 synthesis,

the duodenal absorptive cells have been shown to express 1α-hydroxylase
that is capable of converting 25(OH)D3 to 1,25(OH)2D3, which later dif-

fuses from the cytoplasm to activate nuclear vitamin D receptor (VDR)

(Balesaria et al., 2009). The de novo synthesis of 1α-hydroxylase in human

duodenal tissue is upregulated after 25(OH)D3 exposure. It is noted that

an increase in 1α-hydroxylase transcripts shows a positive correlation with

the expression of transient receptor potential vanilloid calcium channel

(TRPV)-6 (Balesaria et al., 2009). It is, therefore, possible that human duo-

denal absorptive cells can convert 25(OH)D3 into 1,25(OH)2D3, whichmay

subsequently upregulate calcium absorption through TRPV6 (Balesaria

et al., 2009; Cui et al., 2009; Koszewski, Horst, & Goff, 2012). Finally,

the action of 1,25(OH)2D3 is terminated by 24-hydroxylase (CYP24),

which is also under the regulation of 1,25(OH)2D3. Kutuzova and

DeLuca (2004) reported that, in vitamin D-deficient rats, a single-dose

intrajugular injection of 1,25(OH)2D3 (730 ng/kg body weight) markedly

upregulated the duodenal expression of CYP24 transcript within 3 h.

Alternatively, circulating 1,25(OH)2D3 can exert its biological actions by

binding to either plasma membrane receptor 1,25D3-MARRS (membrane-

associated, rapid response steroid-binding) protein or VDR. Activation of

1,25D3-MARRS is responsible for the 1,25(OH)2D3-enhanced rapid cal-

cium absorption across the duodenal epithelium (nongenomic action,

minute-to-minute regulation) (Nemere, Garbi, Hämmerling, & Khanal,

2010; Nemere & Norman, 1990). However, the underlying cellular mech-

anism and intracellular signaling of 1,25D3-MARRS are not completely

understood. In contrast, VDR is a nuclear receptor that forms a heterodimer

with retinoid X receptor (RXR). Thereafter, the 1,25(OH)2D3–VDR–

RXR complex—now being a transcription factor—binds to the vitamin

D-responsive elements (VDREs) to regulate transcription of vitamin

D-sensitive genes, including Trpv6 and Cyp24a1 (genomic action, long-

term regulation) (Meyer, Zella, Nerenz, & Pike, 2007).

3. VITAMIN D-ENHANCED TRANSCELLULAR CALCIUM
TRANSPORT

Since ionized calcium cannot freely move across the lipid bilayer of

the plasma membrane, the polarized duodenal absorptive cells abundantly

express a number of calcium transporters in both apical and basolateral

410 Kannikar Wongdee and Narattaphol Charoenphandhu



plasma membranes as well as in the cytoplasm, most of which are under a

tight regulation of 1,25(OH)2D3 and VDR signaling (Fig. 1). Thus, the

intestinal calcium absorption is dramatically decreased in intestine-specific

VDR knockout mice as compared to normal mice (Lieben et al., 2012).

The vitamin D-enhanced transcellular calcium transport is an active trans-

port process, which requires cellular energy in the form of ATP. This trans-

port mechanism is also sex and age dependent. For instance, female mice

have higher calcium absorption and expression of calcium transporters than

male mice, and a single 1,25(OH)2D3 injection in female mice induces a

Transport of  calcium

Transport of  potassium

Upregulated/stimulated by 1,25(OH)2D3

Tunneling

Ca2+

DVt

Cav

K+

K+

Na+Glu

Na+

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+
Ca2+

Ca2+

Ca2+

Ca2+

Ca2+
Ca2+

Ca2+

Ca2+

Vesicular transport

Paracellular

Transcellular

Depolarization

Free diffusion

TRPV6

TRPV6

TRPV5

NKA

NKA

NCX1

PMCA1b

SGLT1

SERCA

Claudins

Parvalbumin
Sorcin

CaBP-28k

CaBP-9k

ER

PMCA1b

Apical Basolateral

Transport of  calcium (hypothetical)

Transport of  sodium Transport of  glucose (Glu)

Figure 1 A schematic diagram shows possible mechanisms of transcellular and para-
cellular calcium transport in the rat duodenum. 1,25(OH)2D3 is capable of stimulating
both paracellular and transcellular calcium transport [TRPV5/6-mediated calcium entry,
calcium-binding protein (CaBP)-facilitated calcium diffusion, and basolateral active
calcium extrusion], as indicated by red plus signs. ΔVt, change in membrane potential.
Please see text for details. Glu, glucose.
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greater upregulation of calcium transporter expression than in male mice

(Song & Fleet, 2004). As for age dependency, the 1,25(OH)2D3-induced

duodenal calcium absorption is relatively high in young adult rodents before

gradually decreased with age (Wood, Fleet, Cashman, Bruns, &

DeLuca, 1998).

3.1 Apical calcium entry
Free-ionized calcium traverses the duodenal apical membrane via calcium

channels by simple diffusion toward electrochemical potential (i.e., luminal

calcium concentrations of �2–6 mmol/L vs. intracellular concentrations of

�0.1–0.3 μmol/L, and more negative potential inside) (Wasserman, 2004).

Two families of calcium channels, i.e., TRPV5 and 6 (PCa/PNa>100) and

L-type voltage-dependent calcium channel (Cav; conductance 11–25 pS),

are expressed in the apical (brush border) membrane of duodenal absorptive

cells (Morgan, Mace, Helliwell, Affleck, & Kellett, 2003; van de Graaf et al.,

2003), suggesting a redundancy of apical calcium entry mechanisms. In addi-

tion, the absence of one apical calcium transporter can lead to a compensa-

tory upregulation of other calcium transporter expression (Gkika et al.,

2006). Under normal conditions, TRPV6, and to a lesser extent TRPV5,

plays an important role in the duodenal calcium entry in a vitamin

D-dependent manner (Kellett, 2011). Opening of apical calcium channels

is generally dependent on membrane potential (apical resting potential of

�47 mV). Cav opens at a depolarizing potential with activation threshold

of around �25 mV, whereas TRPV6 fully functions under a relatively

hyperpolarized potential of <�50 mV (Kellett, 2011). In renal epithelial

cells, the T-type Cav has been reported to mediate apical calcium entry.

For example, T-type Cav opening in response to testosterone was found

to enhance calcium reabsorption in the rabbit distal renal tubule, but not

proximal tubule, via mitogen-activated protein kinase/extracellular

signal-regulated kinase (MEK)- and tyrosine kinase-dependent mechanisms

(Couchourel, Leclerc, Filep, & Brunette, 2004).

During postprandial period, L-type Cav, particularly the 1.3 subtype

(Cav1.3), helps to enhance apical calcium entry because the Cav1.3-

mediated calcium transport is dependent on luminal glucose (Kellett,

2011; Morgan, Mace, Affleck, & Kellett, 2007). Specifically, glucose

together with other substrates of sodium-dependent glucose transporter

(SGLT)-1, such as galactose, initially induces sodium entry, thereby dep-

olarizing the apical plasma membrane from �47 to �20 mV (Kellett,
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2011). Depolarization then triggers the opening of Cav1.3 for calcium

to diffuse down its concentration gradient into the cytoplasm. This

Cav1.3-mediated calcium transport is markedly diminished by L-type

calcium channel blockers, including dihydropyridine (e.g., nifedipine)

and phenylalkylamine (e.g., verapamil) (Morgan et al., 2003; Thongon,

Nakkrasae, Thongbunchoo, Krishnamra, & Charoenphandhu, 2009).

It has been widely known that 1,25(OH)2D3 potently enhances the

expression of TRPV5 and TRPV6, thus increasing their activities

(Khuituan et al., 2012; Okano, Tsugawa, Morishita, & Kato, 2004).

A single-dose subcutaneous injection of 2 μg/kg 1,25(OH)2D3 in mice

was found to upregulate the duodenal mRNA expression of both TRPV5

and TRPV6 within 3 h and peaked at 6 h before returning to the baseline

levels at 24 h (Khuituan et al., 2012). On the other hand, the Cav1.3-

mediated calcium transport is independent of 1,25(OH)2D3 (Kellett,

2011). At the molecular level, the regulation of TRPV6 by 1,25(OH)2D3

has been identified in human intestinal cells. Meyer, Watanuki, Kim,

Shevde, and Pike (2006) demonstrated in human intestine-like Caco-2 cells

using chromatin immunoprecipitation and found five putative VDREs

located upstream to Trpv6 coding region, and mutagenesis within the

VDRE abrogated all responses to the 1,25(OH)2D3. It was also reported that

heterodimer of VDR and RXR could bind to Trpv6 gene, resulting in both

recruitment of chromatin remodeling coactivator steroid receptor

coactivator 1 as well as modification of histone acetylation. Hence, Trpv6

gene was broadly acetylated in response to 1,25(OH)2D3 specifically at

the VDR/RXR-binding sites.

3.2 Cytoplasmic translocation
Theoretically, free-ionized calcium can freely diffuse across cytoplasmic

aqueous medium at higher rate than proteins. Specifically, the diffusion

coefficient of free-ionized calcium in cytoplasm is 223 μm2/s (Allbritton,

Meyer, & Stryer, 1992), whereas the diffusion coefficient of calbindin-

D9k is �1/14 that of calcium. However, cells usually prevent bulk flow

of free calcium across the cytoplasm, while utilizing facilitated calcium dif-

fusion in protein-bound form. Since elevated intracellular calciummay trig-

ger undesirable intracellular signal transductions and apoptosis, the duodenal

absorptive cells use several mechanisms to keep the cytoplasmic free-ionized

calcium level as low as possible. First, excessive free-ionized calcium and

certain calcium-laden calcium-binding proteins (e.g., calmodulin) close to
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the apical membrane deactivate TRPV6 and perhaps Cav, which can, in

turn, restrict calcium entry (Derler et al., 2006; Kellett, 2011; Lee et al.,

2006; Nilius et al., 2001). Second, most calcium is buffered by cytoplasmic

calcium-binding proteins, particularly calbindin-D9k (S100g), and probably

also by calbindin-D28k, parvalbumin, and calmodulin (Schr€oder,
Schlumbohm, Kaune, & Breves, 1996; Timmermans, Bindels, & Van Os,

1995; Walters, 1989). Meanwhile, calbindin-D9k with two EF-hand

calcium-binding domains indeed elevates the total intracellular concentra-

tion of calcium (bound form plus ionized form) by �50-fold, thereby facil-

itating translational diffusion (ferry) of calcium across the cytoplasm (Feher,

1983). The unoccupied calcium-binding proteins in close vicinity to apical

ion channels prevent channel inactivation, leading to persistent calcium

entry (Fig. 2).
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Ca2+

Ca2+

PMCA1b
Ca2+

CaBP-28k

CaBP-9kCa2+

Ca2+ Calmodulin

Parvalbumin

Basolateral

Figure 2 Cytoplasmic calcium-binding proteins (CaBP) in the duodenal enterocytes
show a high degree of redundancy and have a number of functions. Calcium-free
calcium-binding proteins (e.g., calbindin-D9k and -D28k) buffer the intracellular calcium,
which can, in turn, delay calcium channel inactivation and prolong calcium entry. On the
other hand, some calcium-laden calcium-binding proteins (e.g., calmodulin and
calbindin-D28k) as well as intracellular calcium itself lead to calcium-dependent
inactivation of apical calcium channels, thereby restricting calcium entry. Several
calcium-binding proteins, especially calbindin-D9k, ferry the intracellular calcium from
apical-to-basolateral compartment by a process known as translational diffusion rather
than bucket brigade. Finally, they potentiate PMCA activity to accelerate the basolateral
calcium extrusion. Ca2+, free-ionized calcium.
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The levels of calbindin-D9k mRNA and protein in the duodenal absorp-

tive cells of human and rodents are strongly dependent on 1,25(OH)2D3

(Fleet et al., 2002; Khuituan et al., 2012). Indeed, the expressions of other

calcium-binding proteins and/or their transcripts, e.g., calbindin-D28k,

parvalbumin, calmodulin, and sorcin, are also 1,25(OH)2D3-dependent

(Bindels, Timmermans, Hartog, Coers, & Van Os, 1991; Khanal &

Nemere, 2008a; Wood, Tchack, Angelo, Pratt, & Sonna, 2004) although

their exact contribution to the cytoplasmic calcium translocation remains

enigmatic. The presence of transcellular active calcium transport in the

small intestine of calbindin-D9k knockout mice (Benn et al., 2008) indicates

functional redundancy of cytoplasmic calcium-binding proteins and

thus strengthens the physiological role of other proteins. Upregulation

of calbindin-D28k and parvalbumin mRNA expression is evident under

certain conditions with high-calcium demand, such as pregnancy and lacta-

tion (Charoenphandhu, Wongdee, Teerapornpuntakit, Thongchote, &

Krishnamra, 2008; Teerapornpuntakit, Klanchui, Karoonuthaisiri,

Wongdee, & Charoenphandhu, 2014), suggesting that they play a role in

cytoplasmic facilitated calcium transport. In avian small intestine and mam-

malian renal tubular cells, calbindin-D28k is the principal protein for intra-

cellular apical-to-basolateral transport (Hall & Norman, 1990).

Cytoplasmic calcium translocation in both avian and mammals may also

be mediated by a mechanism called vesicular calcium transport (Fig. 1), in

which calcium is captured inside an endocytic vesicle or later pumped into

an intracellular membrane-bound vesicle before being extruded at the bas-

olateral membrane by exocytosis (Khanal & Nemere, 2008b; Nemere,

Leathers, & Norman, 1986). In the duodenal enterocytes of white Leghorn

cockerels, vitamin D-dependent calbindin-D28k is localized in the

lysosome-like vesicles, presumably to help buffer intravesicular calcium

(Nemere et al., 1986). Vesicular calcium transport underlies the rapid

nongenomic 1,25(OH)2D3-enhanced vectorial calcium absorption—

previously known as transcaltachia (Nemere & Norman, 1990).

In addition, calcium is hypothesized to translocate across the cytoplasm

by tunneling through endoplasmic reticulum (ER) (Fig. 1). This mechanism

was identified in pancreatic cells but has never been studied in the duodenal

enterocytes. The responsible transporters in the duodenal ERmembrane are

unknown. In pancreatic acinar cells, Mogami, Nakano, Tepikin, and

Petersen (1997) showed recharging of intracellular calcium stores in

response to calcium depletion mediated by movement of calcium through

a tunnel from the basal to secretory poles. Since VDR has been shown to
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interact with sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) in

cardiomyocytes (Zhao & Simpson, 2010), it is tempting to speculate that

1,25(OH)2D3 might directly modulate SERCA activity, leading to the

enhanced calcium tunneling across the duodenal cytoplasm.

3.3 Basolateral extrusion
Since electrochemical gradient across the duodenal basolateral membrane is

thermodynamically unfavorable for simple diffusion [i.e., �0.1–1 μmol/L

cytoplasmic calcium vs. 1.2–1.3 mmol/L plasma calcium, and positive

potential difference (PD) of �58 mV (extracellular positive voltage)], met-

abolically energized active transport processes are required for basolateral

uphill calcium extrusion. The cellular energy of�9.3 kcal (39 kJ) is required

to transport one mole of calcium against this electrochemical gradient

(Wasserman & Fullmer, 1995). Although both plasma membrane Ca2+-

ATPase (PMCA) subtype 1b and Na+/Ca2+-exchanger (NCX)-1 play an

important role in the basolateral calcium transport, the detailed cellular

and molecular mechanisms remain controversial. PMCA1b (Atp2b1) is a pri-

mary active transporter (P-type ATPase) that can directly hydrolyze ATP to

drive its transport activity (Km�0.2 μmol/L in the presence of calmodulin),

whereas NCX1 (Slc8a1; Na+/Ca2+ ratio 3:1) is coupled with Na+/K+-

ATPase (NKA) that generates sodium gradient for NCX1-mediated

calcium efflux (Fig. 3A). In rats, the PMCA1b activity is highest in the duo-

denum as compared to other small intestinal segments (Ghijsen & Van Os,

1982). PMCA1b-mediated calcium transport is approximately fivefold

greater than the NCX1-mediated transport (Ghijsen, de Jong, & Van Os,

1983). It was, therefore, previously believed that PMCA1b was the principal

active transporter for basolateral calcium extrusion. However, our group

recently demonstrated a complete abolishment of the 1,25(OH)2D3-

enhanced active calcium transport in the mouse duodenum when inhibited

by NCX inhibitor (100 μmol/L KB-R7943) alone and calmodulin-

dependent PMCA inhibitor (100 μmol/L trifluoperazine) alone as well as

KB-R7943 plus trifluoperazine (Khuituan et al., 2013), indicating that in

response to 1,25(OH)2D3, both transporters might function in an

interdependent manner. In other words, once PMCA1b is inhibited, calcium

transport via NCX1 eventually decreases, and vice versa. Similar finding is

also observed when the duodenal active calcium transport is stimulated

by prolactin (Dorkkam, Wongdee, Suntornsaratoon, Krishnamra, &

Charoenphandhu, 2013).
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Expression of PMCA1b transcripts is significantly upregulated by 1,25

(OH)2D3 in subclones of human Caco-2 cells (Fleet et al., 2002), whereas

vitamin D deficiency decreases the mRNA level of PMCA (Zelinski,

Sykes, & Weiser, 1991). Since 1,25(OH)2D3 supplementation markedly

increases the activities of PMCA, but not NCX, in vitamin D-deficient rats

(Ghijsen et al., 1983), the NCX1-mediated calcium extrusion is thought to

be vitamin D independent. However, in the duodenum of chicks (Gallus

domesticus), vitamin D deficiency leads to a decrease in NCX activity, which

is fully restored by 1,25(OH)2D3 administration (Centeno, Picotto, Pérez,

Alisio, & Tolosa de Talamoni, 2011), whereas low-calcium diet enhances

both PMCA and NCX activities (Centeno et al., 2004). 1,25(OH)2D3

administration also upregulates the mRNA and protein expression of

NCX1 in the chick duodenum (Centeno et al., 2011). Similarly, in the duo-

denum of vitamin D-replete mouse (Khuituan et al., 2012, 2013), 1,25

(OH)2D3 enhances the NCX1-mediated calcium transport presumably by

upregulating NCX1 transcription (Fig. 3B). Recently, another family of

the basolateral calcium transporters, namely potassium-dependent sodium

NCX1

NKA

A B

Figure 3 (A) Basolateral calcium extrusion through Na+/Ca2+-exchanger (NCX)-1. The
NCX1 is coupled with Na+/K+-ATPase (NKA). NKA first moves three sodium ions out
of the cell and moves two potassium ions into the cell, thereby generating sodium gra-
dient for NCX1 function. NCX1 then allows influx of three sodium ions and efflux of one
calcium ion. NCX1 activity can be inhibited by KB-R7943. (B) Time-dependent expression
of NCX1 in duodenal epithelial cells of mice subcutaneously injected with a single-dose
2 μg/kg 1,25(OH)2D3, as determined by quantitative real-time PCR. The duodenal
epithelial cells were collected at 0, 3, 6, 12, and 24 h after 1,25(OH)2D3 injection.
Values are means�SE of NCX1/HPRT1 expression ratios. The results show that, at
3 h postinjection, 1,25(OH)2D3 significantly increases the mRNA level of NCX1 by
2.69-fold (*P<0.05 vs. 0 h; one-way analysis of variance with Dunnett's posttest) before
returning to the baseline thereafter. HPRT1, hypoxanthine phosphoribosyltransferase-1
(a housekeeping gene).
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calcium exchangers (e.g., NCKX3 and 4), has been suggested to contribute

to calcium extrusion (Kopic & Geibel, 2013), but whether 1,25(OH)2D3 is

capable of stimulating these transporters in the small intestine is not known.

A study in mouse dendritic cells indicated that 1,25(OH)2D3 could increase

the membrane abundance of NCKX proteins as well as their activities

(Shumilina et al., 2010).

The basolateral calcium extrusion is indeed coupled with apical calcium

uptake and cytoplasmic calcium translocation. Claassen, Coetzer, de

Winter, Haag, and Kruger (1996) reported a linear relationship between

the apical calcium uptake and PMCA activity in the duodenum of male rats.

In addition, vitamin D-dependent calbindin-D9k as well as some other

calcium-binding proteins, such as calmodulin, calbindin-D28k, and

parvalbumin, appears to be salient activators of PMCA activity

(Timmermans et al., 1995; Walters, 1989). This coupling mechanism thus

ensures that calcium absorption occurs at the highest efficiency without

intracellular calcium accumulation, which not only blocks apical calcium

uptake but may also induce undesirable responses, e.g., inhibition of sodium

absorption and apoptosis.

4. VITAMIN D-ENHANCED PARACELLULAR CALCIUM
TRANSPORT

In the leaky epithelia with transepithelial resistance of <100 Ω cm2

like the small and large intestine, luminal calcium is able to traverse the

epithelial sheet through the paracellular pathway—an electrically charged,

watery space between the two epithelial cells (also known as the lateral

intercellular space). In the rat duodenum, calcium movement is

driven by free energy of electrochemical gradient (passive diffusion) or

solvent drag (Charoenphandhu & Krishnamra, 2007; Charoenphandhu,

Wongdee, & Krishnamra, 2010). Charge- and size-selective properties

of the junctional complex, particularly tight junction (effective pore

diameter �0.5–3.5 nm), also affect the paracellular calcium transport

(Charoenphandhu et al., 2010).

4.1 Paracellular calcium transport driven by electrochemical
gradient

Dostal and Toverud (1984) reported a reduction in the passive nonsaturable

component of duodenal calcium absorption in vitamin D-deficient rats,

suggesting that the passive paracellular calcium transport is indeed dependent

on 1,25(OH)2D3 action. Generally, this mode of calcium transport is
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considered unsaturable and increases linearly with luminal free-ionized cal-

cium concentration. It was previously believed that the paracellular space

was merely a simple water-filled channel, where transepithelial fluxes in

the apical-to-basolateral and basolateral-to-apical directions were identical

when the driving transepithelial calcium gradients had the same magnitude.

However, our group has demonstrated in human intestinal epithelium-like

Caco-2 monolayer that the paracellular space—or more precisely the tight

junction—is a rectifying channel (Thongon et al., 2009). Therefore, under

certain conditions (e.g., short-circuit condition; transepithelial PD¼0 mV),

the apical-to-basolateral paracellular calcium flux is slightly greater than that

in the opposite direction (Thongon et al., 2009). In humans and rats fed

calcium-replete diet, free-ionized calcium concentration in the duodenal

lumen is as high as 2–6 mmol/L, which can diffuse down the concentration

gradient via the paracellular pathway into the interstitial fluid or plasma

(plasma free-ionized calcium concentration �1.25 mmol/L) (Duflos,

Bellaton, Pansu, & Bronner, 1995; Wasserman, 2004). Our investigation

in Ussing chamber showed that a significant amount of the duodenal para-

cellular passive flux occurred when the apical calcium concentration was

5 mmol/L, but not 2.5 mmol/L, versus the basolateral concentration of

1.25 mmol/L (Charoenphandhu et al., 2006).

In addition to calcium concentration gradient, the voltage gradient or

PD can also drive the paracellular calcium flux. Under normal conditions,

the duodenal lumen is negative compared to plasma; therefore, plasma

calcium diffuses down the voltage gradient into the lumen (i.e., calcium

secretion). However, since PD across the duodenal epithelium is relatively

low (�2–5 mV, negative luminal potential) and since elimination of

PD by short-circuit current does not much affect transepithelial

calcium flux, electrodiffusion of calcium may be considered negligible

(Charoenphandhu, Limlomwongse, & Krishnamra, 2001). It has been

reported that 1,25(OH)2D3 is capable of enhancing the activities of elec-

trogenic transporters, such as NKA and SGLT-1, which, in turn, alters the

PD (Elstein & Silver, 1986; Rexhepaj et al., 2011). Hence, 1,25(OH)2D3

might also indirectly modulate the voltage-dependent calcium transport,

but the effect would still be relatively small.

4.2 Solvent drag-induced paracellular calcium transport
A correlation between transepithelial paracellular water flow and tracer

solutes substantiates physiological significance of solvent drag, in which

ions and small hydrophilic molecules traverse the tight junction and the
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remaining part of the paracellular space along with the stream of water

(Mullen, Muller, & Van Bruggen, 1985). Our group has provided evidence

that rat duodenal epithelium is able to absorb calcium via the solvent drag-

induced mechanism (Tanrattana, Charoenphandhu, Limlomwongse, &

Krishnamra, 2004). Nevertheless, direct visualization of water flow across

the tight junction (e.g., using fluorescent marker and confocal microscope)

has been unsuccessful (Kovbasnjuk, Leader, Weinstein, & Spring, 1998),

and most solvent drag studies rely upon the use of paracellular markers

(e.g., mannitol, polyethylene glycol, and inulin)—substances not absorbed

transcellularly—and/or measurement of transepithelial [3H]2O flux. To

obtain a substantial magnitude of solvent drag-induced calcium transport,

the duodenal epithelial cells have to activate SGLT-1 andNKA. Specifically,

sodium entering through SGLT-1 (and perhaps through some other

sodium-coupled apical transports, e.g., amino acid transporters) is pumped

into the paracellular space by NKA, thereby increasing the sodium concen-

tration in the space for osmotic water flow. The presence of SGLT-1 sub-

strates, such as glucose and galactose, in the apical compartment thus

augments the duodenal calcium absorption (Suntornsaratoon et al., 2014).

In the duodenum of male mice, 1,25(OH)2D3 was found to significantly

increase the transepithelial [3H]2O flow, but the paracellular transport of

mannitol (molecular radius �0.4 nm) was not observed until there was a

widening of tight junction by tumor necrosis factor-α (Khuituan et al.,

2013). Such an increase in water flow can be explained by the stimulatory

effects of 1,25(OH)2D3 on SGLT-1 and NKA (Elstein & Silver, 1986;

Rexhepaj et al., 2011). Indeed, the solvent drag-induced duodenal calcium

transport occurs very rapidly within 60 min after a direct exposure to

10–1000 nmol/L 1,25(OH)2D3, which is probably mediated by

nongenomic pathways involving 1,25D3-MARRS, phosphatidylinositol

3-kinase (PI3K), protein kinase C (PKC), and MEK (Tudpor,

Teerapornpuntakit, Jantarajit, Krishnamra, & Charoenphandhu, 2008). In

contrast, Nemere et al. (1986) reported no difference in the serum tritium

levels after adding [3H]2O into the duodenal lumen of vitamin D-deficient

and 1,25(OH)2D3-treated chicks, suggesting that 1,25(OH)2D3 might

not regulate the lumen-to-plasma water flow in avian. Alternatively,

1,25(OH)2D3 might have used other mechanisms to increase solvent

drag-induced calcium transport, for example, by inducing contraction

of perijunctional actomyosin ring to widen the tight junction pores (i.e.,

modulating size selectivity; for review, please see Turner, 2000), or by

increasing cation permselectivity of the tight junction (Tudpor et al., 2008).
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4.3 Charge- and size-selective properties of tight junction
The duodenum epithelium is basically cation selective with permeability

ratio of sodium and chloride (PNa/PCl) between 1.2 and 2

(Charoenphandhu et al., 2006; Tudpor et al., 2008). It allows paracellular

movement of small monovalent and divalent cations, e.g., Na+ and Ca2+,

both of which have ionic radii of �115 pm. In general, alterations of

charge/size-selective properties and/or cation permselectivity of tight junc-

tion markedly affect paracellular ion transport via passive diffusion and sol-

vent drag-induced mechanisms. Our group has reported that although a

rapid exposure (60 min) to 100 nmol/L 1,25(OH)2D3 did not change the

charge-selective property of the rat duodenal epithelium as indicated by

no change in PNa/PCl, the actual values of PNa and PCl were significantly

increased (Tudpor et al., 2008). Therefore, the 1,25(OH)2D3-exposed duo-

denal epithelium is likely to have higher paracellular permeability to both

cations (e.g., calcium) and anions.

At the molecular level, 1,25(OH)2D3 alters tight junction perm-

selectivity of intestinal epithelium by regulating the expression of tight

junction-related genes, particularly claudins. Fujita et al. (2008) have

demonstrated by using RNA interference and overexpression techniques

that claudin-2 and -12 were upregulated by 1,25(OH)2D3 through the

VDR, resulting in an increase in paracellular calcium transport in human

enterocyte-like Caco-2 cells. In vivo experiment also revealed down-

regulation of claudin-2 and -12 in the duodenum, ileum, and colon

of the VDR knockout mice at both transcriptional and translational

levels (Fujita et al., 2008). Similarly, Hwang et al. (2013) showed down-

regulation of claudin-2 as well as claudin-15 mRNAs and proteins in the

duodenum of calcium/vitamin D-deficient calbindin-D9k knockout

mice. On the other hand, high concentration of 1,25(OH)2D3

conversely suppressed claudin-3 mRNA expression in the rat duode-

num as determined by Affymetrix microarrays (Kutuzova & DeLuca,

2004). The aforementioned evidence thus suggested that 1,25(OH)2D3

regulates duodenal paracellular calcium transport through a combination

of different claudins, i.e., claudin-2, -3, -12, and/or -15. In addition,

other charge-selective claudins, such as claudin-10 and -16, the latter

of which has been reported to be calcium-permeable and is expressed

in the rat small intestine, may have roles in calcium absorption (Inai

et al., 2005; Wongdee, Teerapornpuntakit, Siangpro, Chaipai, &

Charoenphandhu, 2013).
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1,25(OH)2D3 also modulates the expression of duodenal nonclaudin

tight junction-related proteins, such as zonula occludens protein (ZO) and

occludin (Hwang et al., 2013). Hwang et al. (2013) found the expressions

of occludin and ZO-1 transcripts to be downregulated in calbindin-D9k

knockout mice given calcium- and vitamin D-deficient diet, but not normal

diet. Western blot and immunohistochemical analyses of ZO-1 in duode-

num also showed similar trend as mRNA results. E-cadherin—the critical

component of the adherens junction for maintaining integrity of the

epithelium—was also upregulated in response to 1,25(OH)2D3 in human

intestinal epithelium-like Caco-2 cells via RhoA–Rho-associated coiled-

coil kinase (RhoA–ROCK) activation (Ordóñez-Morán et al., 2008).

5. REGULATION OF CALCIUM TRANSPORT BY THE
PARATHYROID–KIDNEY–INTESTINAL AXIS

Since dietary calcium intake and daily calcium requirement vary

largely from day to day and in different phases of life, the homeostatic system

has to adjust calcium storage in bone as well as renal and intestinal calcium

transport to meet the body requirements with a minimal change in plasma

calcium level (Peacock, 2010). However, plasma calcium fluctuation may

occur in several circumstances, e.g., changes in intestinal calcium absorption

and renal calcium excretion. Such transient change of plasma calcium is

recovered by an integrative response of three calcium-regulating organs

organized as the parathyroid–kidney–intestinal axis (Fig. 4) (Kopic &

Geibel, 2013; Peacock, 2010). PTH secretion from the parathyroid gland

is inhibited after calcium binds to calcium sensing receptor (CaSR) in the

plasma membrane of parathyroid chief cells. In a classical loop of regulation,

low plasma calcium level curtails this CaSR-induced suppression, thereby

increasing PTH secretion. PTH, in turn, raises plasma calcium level by

(i) enhancing calcium reabsorption in the thick ascending limb of the

Henle’s loop and distal renal tubule, which occurs within minutes, and

(ii) stimulating osteoblasts to secrete RANKL, which activates osteoclast-

mediated bone resorption within minutes to hours (Favus, Bushinsky, &

Lemann, 2006; Kopic & Geibel, 2013). PTH can further induce bone cal-

cium release by osteocytes through a poorly defined mechanism, known as

osteocytic osteolysis (Tazawa et al., 2004).

PTH and low plasma calcium also independently stimulate

1α-hydroxylase in the proximal renal tubule, thus increasing the production

of 1,25(OH)2D3, which potently stimulates intestinal calcium absorption
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Figure 4 Interrelationship between the parathyroid–kidney–intestinal (left panel) and
bone–kidney–intestinal axes (right panel) in regulating calcium homeostasis. In the
parathyroid–kidney–intestinal axis, low plasma calcium level is detected by parathyroid
glands, thereby stimulating PTH release. PTH stimulates 1α-hydroxylase in the kidney to
convert 25(OH)D3 into 1,25(OH)2D3. An increase in 1,25(OH)2D3 level further enhances
bone resorption, inhibits bone mineralization, and promotes intestinal calcium absorp-
tion, thus increasing plasma calcium level. In the bone–kidney–intestinal axis, high
plasma calcium leads to an increase in circulating level of fibroblast growth factor
(FGF)-23 produced by bone and perhaps by the intestine. FGF-23 suppresses renal
1,25(OH)2D3 production by inhibiting 1α-hydroxylase, thereby decreasing intestinal cal-
cium and phosphate absorption, which, in turn, lower plasma calcium and phosphate
levels. An increase in circulating 1,25(OH)2D3 level in the parathyroid–kidney–intestinal
axis can also increase bone FGF-23 production, which links the two axes together.
Furthermore, FGF-23 is hypothesized to exert a direct inhibitory effect on the intestine.
Circulating FGF-23 might directly suppress intestinal calcium and phosphate absorp-
tion, whereas local FGF-23 production from the enterocytes might serve to prevent
excessive intestinal calcium/phosphate absorption.
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within 24 h after PTH secretion (Favus et al., 2006). An increase in plasma

calcium induces a negative feedback that inhibits PTH secretion from the

parathyroid chief cells. At the cellular level, ionized calcium binds to CaSR,

which signals through phospholipase C, inositol triphosphate (IP3), and

diacylglycerol (DAG). CaSR can also be stimulated by other cations, e.g.,

Mg2+, Pb2+, Cd2+, Fe2+, Ba2+, Ni2+, Co2+, and Gd3+, as well as poly-

cationic molecules, e.g., spermine, spermidine, putrescine, and neomycin

(Handlogten, Shiraishi, Awata, Huang, & Miller, 2000; Kopic & Geibel,

2013; Quinn et al., 1997). An increase in IP3 causes calcium release from

intracellular store, whereas DAG activates PKC. Both intracellular calcium

and PKC then inhibit PTH granule release. Increased intracellular calcium

also inhibits PTH synthesis. Thus, plasma calcium itself acts as the principal

negative feedback regulator in the parathyroid–kidney–intestinal axis

(Kopic & Geibel, 2013). Besides the calcium level, PTH and 1,25

(OH)2D3 themselves take part in the feedback loop; i.e., high PTH levels

suppress PTH gene expression while upregulating CaSR. Meanwhile, high

1,25(OH)2D3 levels also suppress renal CYP27B1 (1α-hydroxylase) and
increase CYP24 (24-hydroxylase) activities to lower its own circulating level

and thus activity (Favus et al., 2006; Kopic & Geibel, 2013).

PTH not only increases intestinal calcium absorption indirectly by stim-

ulating 1,25(OH)2D3 production but also has a direct stimulatory effect on

the intestinal calcium absorption. Nemere and Szego (1981) demonstrated

that 0.01 nM PTH enhanced 45Ca uptake in the rat intestine. Picotto,

Massheimer, and Boland (1997) similarly revealed a stimulatory effect of

PTH on calcium influx into the rat duodenal cells. This direct effect of

PTH on enterocytic calcium influx is potently blocked by L-type calcium

channel blockers, verapamil and nitrendipine (Picotto et al., 1997),

suggesting that PTH induces calcium entry via L-type Cav. The direct stim-

ulatory effect of PTH on intestinal calcium transport was also demonstrated

in other species, e.g., chick and sea bream (Fuentes, Figueiredo, Power, &

Canário, 2006; Nemere & Norman, 1986).

At the cellular and molecular levels, several lines of evidence have rev-

ealed the expression of PTH/PTH-related peptide (PTHrP) receptor tran-

scripts in nonclassical PTH target tissues, e.g., blood vessels, adrenal gland,

lung, liver, and intestine (Li et al., 1995; Ureña et al., 1993). Li et al. (1995)

by using RT-PCR and Northern blot analysis reported that PTH/PTHrP

receptor transcripts were widely expressed in the rat small intestine as well as

in rat and human intestinal cell lines, such as IEC-6 and LoVo, respectively.

In situ hybridization and immunohistochemistry showed nuclear localization

of PTHrP and its receptor—which can bind to both PTH and PTHrP—in
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the epithelial cells lining villus and crypts, and in smooth muscles surround-

ing the gut in rat (Watson et al., 2000). The presence of PTH, PTHrP, and

their receptors in the same intestinal regions/cell lines, therefore, implicated

the possibility of autocrine and paracrine actions of PTH and/or PTHrP

(Li et al., 1995; Nemere & Larsson, 2002). Besides calciotropic action,

PTH also plays an important role in regulating intestinal transport of other

ions, such as phosphate and bicarbonate (Laohapitakworn, Thongbunchoo,

Nakkrasae, Krishnamra, & Charoenphandhu, 2011; Nemere, 1996). By

using perfused duodenal loop, PTH was found to stimulate phosphate

absorption in the chick duodenum (Nemere, 1996), while an in vitro exper-

iment in Caco-2 monolayer revealed that PTH rapidly and directly stimu-

lated apical bicarbonate secretion through cystic fibrosis transmembrane

conductance regulator in protein kinase A- and PI3K-dependent manner

(Charoenphandhu et al., 2011; Laohapitakworn et al., 2011).

As for calcitonin, although it is one of the major calcium-regulating hor-

mones, little is known regarding its effects on intestinal calcium absorption

and the available data are controversial. Several investigators have suggested

the inhibitory effect of calcitonin on intestinal calcium absorption. For

instance, Olson, DeLuca, and Potts (1972) determined calcium absorption

in vascularly perfused isolated rat small intestine and found that acute infu-

sion of calcitonin immediately decreased intestinal calcium absorption.

Cramer (1973), on the other hand, showed that physiological and pharma-

cological doses of calcitonin did not alter calcium absorption in rat. A study

of the calcitonin effect on intestinal calcium absorption in adult Merino

sheep found that intravenous infusion of high-dose calcitonin initially

increased calcium absorption associated with hypocalcemia, followed by a

marked reduction in calcium absorption after a delay of few days

(Swaminathan, Ker, & Care, 1974). Chronic infusion of calcitonin

(0.2 U/h for 12 days in rats) paradoxically increased plasma calcium by

50%, which likely resulted from the increased intestinal calcium absorption

since this effect disappeared after removal of calcium from the diet ( Jaeger,

Jones, Clemens, & Hayslett, 1986). However, the exact role(s) and under-

lying mechanism of calcitonin on intestinal calcium transport are waiting for

an extensive systematic investigation.

6. NOVEL CONCEPT OF THE BONE–KIDNEY–INTESTINAL
AXIS OF CALCIUM REGULATION

A prolonged increase in the duodenal calcium influx may lead to

calcium-dependent inactivation of the transcellular transport process, which
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appears to occur from single-channel level (e.g., closure of calcium channel)

to systemic level (e.g., release of hypocalcemic hormone) in order to help

restrict excessive calcium uptake into the body. The molecular mechanism

of this phenomenon in the duodenal enterocytes is not well understood, but

can be explained, in part, by inhibition of apical calcium entry through

TRPV6 and Cav by ionized calcium as well as calcium-laden calcium-

binding proteins, particularly calmodulin—known as calcium-dependent

inactivation of calcium channels (Derler et al., 2006; Lee et al., 2006). Inhi-

bition of 1,25(OH)2D3 production by elevated plasma ionized calcium

(Kopic & Geibel, 2013) after enhanced intestinal calcium absorption cer-

tainly contributes to the inactivation of transcellular calcium transport pro-

cess. Moreover, certain local and systemic humoral factor(s) may negatively

regulate the duodenal calcium transport in a calcium and/or 1,25(OH)2D3-

dependent manner.

FGF-23 has been known as osteocyte/osteoblast-derived phosphate-

regulating hormone although it is also abundantly expressed in other cell

types, such as kidney, brain, lung, liver, spleen, and duodenal enterocytes

(Khuituan et al., 2012; Kolek et al., 2005). 1,25(OH)2D3 increases FGF-

23 expression in both bone and intestine (Khuituan et al., 2012; Kolek

et al., 2005). In healthy individuals, an increase in serum phosphate level

induces PTH and FGF-23 release. PTH and FGF-23 prevents hyper-

phosphatemic spikes, which could have undesirable consequences, such as

ectopic calcification. The hypophosphatemic action of both hormones is

by inducing phosphaturia through inhibition of NaPi-2a and -2c activities

in the proximal renal tubules and by suppressing CYP27B1, an enzyme for

1,25(OH)2D3 synthesis ( J€uppner, 2011; Kolek et al., 2005). FGF-23 not

only controls phosphate homeostasis but also acts as a calcium-regulating

hormone. Shimada et al. (2005) have demonstrated using VDR knockout

mice that calcium is a potent stimulator of FGF-23 production via a

VDR-independent pathway. In normal diet-fed VDR knockout mice,

serum FGF-23 levels are very low, whereas calcium supplement significantly

increases both serum FGF-23 and mRNA expression in bone. Furthermore,

in a study using PTH knockout and PTH/CaSR double knockout

mice, FGF-23 level was associated with interactions between serum

calcium�phosphorus products and threshold levels for calcium and phos-

phorus (Quinn et al., 2013). Specifically, the calcium-mediated increase

in serum FGF-23 level required a threshold phosphate level of 5 mg/dL

(i.e., serum phosphate>5 mg/dL), whereas the phosphate-induced increase
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in serum FGF-23 required serum calcium levels of >8 mg/dL. Serum

FGF-23 begins to increase exponentially when the calcium�phosphorus

products were >50 mg2/dL2 (Quinn et al., 2013). The aforementioned

findings have indicated that the regulation of FGF-23 by calcium and phos-

phate is fundamentally important in coordinating the serum levels of both

mineral ions, and vice versa, to ensure that the calcium�phosphate product

is maintained within a normal range (Quinn et al., 2013).

Regarding the calcium-regulating action of FGF-23, our laboratory has

demonstrated, for the first time, a novel role of FGF-23 as a negative feed-

back regulator for the 1,25(OH)2D3-enhanced duodenal calcium absorption

in mice (Khuituan et al., 2012, 2013). This finding provides an alternative

explanation of how the duodenal enterocytes restrict excessive calcium

transport and thus prevent lethal hypercalcemia. Therein, mice injected with

1 μg/kg 1,25(OH)2D3 once a day for 3 days showed an approximately 1.8-

fold increase in duodenal calcium transport, which was completely abolished

by concurrent intravenous injection of 140 μg/kg FGF-23 (Khuituan et al.,

2012). FGF-23 directly inhibited the 1,25(OH)2D3-induced calcium trans-

port via MAPK/ERK, p38 MAPK, and PKC signaling pathways (Khuituan

et al., 2012), and perhaps indirectly via renal inhibition of 1,25(OH)2D3 syn-

thesis (Shimada et al., 2005). The observed action of FGF-23 markedly

affected both paracellular and transcellular transport, the latter of which

apparently resulted from the downregulation of calcium transporter expres-

sion, i.e., TRPV5, TRPV6, and calbindin-D9k (Khuituan et al., 2012). As

for the paracellular pathway, FGF-23 modestly but significantly decreased

the 1,25(OH)2D3-induced paracellular calcium flux and calcium permeabil-

ity (Khuituan et al., 2013). FGF-23 is, therefore, recognized as a part of the

bone–kidney–intestinal axis, as depicted in Fig. 4.

In addition, the calcium-regulating role of FGF-23 may shed a new

light on the search for a biomarker of body calcium status and efficiency

of oral calcium supplementation. Specifically, positive calcium balance

or efficient calcium supplement should be accompanied by a relatively

high circulating level of FGF-23. Up until now, clinicians often use plasma

levels of calcium, inorganic phosphate, PTH, 25(OH)D3, 1,25(OH)2D3,

and bone turnover markers (e.g., C-telopeptide of type I collagen) to

represent body calcium status. Other promising candidates as indicators

of calcium deficiency and calcium intake in humans include urinary con-

centrations of pseudouridine and citrate as revealed by a metabonomics

analysis (Wang et al., 2013).
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7. VITAMIN D-INDEPENDENT INTESTINAL CALCIUM
TRANSPORT

Although 1,25(OH)2D3 is of the utmost importance for avian and

mammalian intestinal calcium absorption, the vitamin D-independent cal-

cium transport does have considerable impact under certain conditions

(e.g., young growing period) as well as in some mammalian species (e.g.,

underground mole-rats). In other words, the duodenal calcium absorption

sometimes requires a different set of calciotropic hormones independent of

1,25(OH)2D3. In some circumstances, such as pregnancy and lactation, 1,25

(OH)2D3 is not the main calciotropic hormone, but it exerts a permissive

action or works cooperatively with other hormones to regulate calcium

metabolism.

7.1 Calcium absorption in neonatal period
In 14-day-old suckling rats, the duodenal calcium absorption that mostly

occurs through the paracellular (nonsaturable) pathway is similar under vita-

min D-replete and vitamin D-deficient conditions, indicating the vitamin

D-independent nature of neonatal calcium transport (Dostal & Toverud,

1984). The vitamin D-dependent calcium absorption is usually seen after

weaning (�18- to 21-day-old rats) (Dostal & Toverud, 1984; Halloran &

DeLuca, 1980). Interestingly, Halloran and DeLuca (1980) demonstrated

that intrajugular injection of 1,25(OH)2D3 enhanced neither passive nor

active calcium absorption in vitamin D-deficient suckling rats (14 days post-

partum), but markedly stimulated active calcium absorption in weaning rats

(28 days postpartum). An investigation on vitamin D-deficient newborn

piglets (<6 days postpartum) showed that duodenal active calcium transport

was not different from that in vitamin D-replete piglets, and 2-day 1,25

(OH)2D3 supplementation could not enhance calcium absorption

(Schroeder, Dahl, & Breves, 1998). Since a number of nutrients (e.g., casein

phosphopeptides, lactose, glucose, and galactose) and bioactive peptides

(e.g., prolactin, IGF-1, calcitonin, and PTHrP)—all of which are also

present in milk—have been reported to augment calcium transport

(Kocián, Skála, & Bakos, 1973; Pahuja & DeLuca, 1981; Schuette,

Knowles, & Ford, 1989; Zhou, Nemere, & Norman, 1992), these milk

ingredients may be alternative factors that stimulate duodenal calcium

absorption in the neonates. Certain milk peptides, especially prolactin,

may be able to exert its calciotropic action from the blood side after being
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absorbed as a whole peptide in newborn animals (Gonnella, Harmatz, &

Walker, 1989; Whitworth & Grosvenor, 1978).

7.2 Calcium absorption in pregnant and lactating periods
During pregnancy, the duodenal calcium absorption is markedly stimulated

to supply calcium for the development of fetus and mineral accretion in

maternal bone, the latter of which serves to expand the calcium storage pool

in bone that is later resorbed during lactation, a period of high-calcium

demand for milk production (Charoenphandhu et al., 2010). Calcium hyp-

erabsorption persists until the end of lactation (Charoenphandhu et al.,

2010). Bone is also an important source of calcium for lactogenesis, partic-

ularly when dietary calcium intake is inadequate (Bowman & Miller, 2001;

Kovacs, 2005). It has been known for several decades that the intestinal cal-

cium absorption during pregnancy and lactations are independent of vitamin

D (Pahuja & DeLuca, 1981). The duodenal TRPV6 mRNA expression and

calcium transport are significantly increased in pregnant VDR-null mice,

similar to those found in wild-type mice (Fudge & Kovacs, 2010). Although

the transcellular active calcium transport does occur in vitamin D-deficient

dams, lactating rodents sometimes show an elevated 1,25(OH)2D3 level

(Douard et al., 2012), which is capable of potentiating the action of other

calciotropic hormone (e.g., prolactin), and may also be essential for calcium

mobilization intomilk (Ajibade et al., 2010). Brommage, Baxter, andGierke

(1990) estimated �23% of milk calcium transfer being vitamin

D-dependent.

Our group has elaborated that the pituitary hormone prolactin is

the salient calciotropic hormone for pregnancy and lactation (for reviews,

please see Charoenphandhu et al., 2010; Wongdee & Charoenphandhu,

2013). Long-term hyperprolactinemia (�75–200 ng/mL; baseline level

in nonpregnant rat �7–10 ng/mL), which occurs physiologically during

these reproductive periods, leads to upregulation of transcellular calcium

transporter expression (e.g., TRPV5, TRPV6, calbindin-D9k, and

PMCA1b) as well as the expression of tight junction genes, thereby increas-

ing both transcellular and paracellular duodenal calcium transport

(Charoenphandhu et al., 2009; Teerapornpuntakit et al., 2014). During

lactation, the suckling-induced prolactin surge (�400–800 ng/mL) further

increases the duodenal calcium flux to compensate for calcium loss in milk,

possibly by sensitizing the Cav1.3-mediated transcellular calcium transport

(Charoenphandhu et al., 2009; Nakkrasae, Thongon, Thongbunchoo,
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Krishnamra, & Charoenphandhu, 2010; Suntornsaratoon et al., 2014).

Besides 1,25(OH)2D3 and prolactin, other endocrine factors with elevated

levels during pregnancy and/or lactation, especially placental lactogen,

estrogen, calcitonin, and PTHrP, may also contribute to the enhanced cal-

cium absorption (Colin et al., 1999; Fuentes et al., 2006; Jaeger et al., 1986;

Takeuchi, Morikawa, Ueda, & Mochizuki, 1988).

7.3 Calcium absorption in naturally vitamin D-impoverished
mammals

Not all adult mammals require vitamin D for intestinal calcium absorption.

For example, the subterranean mole-rats (such as Cryptomys damarensis

and Heterocephalus glaber) live in an underground maze without exposure to

sunlight and usually consume vitamin D-depleted herbivorous diet. There-

fore, they are naturally vitamin D-deficient with undetectable 25(OH)D3

and remarkably low 1,25(OH)2D3 levels (Pitcher & Buffenstein, 1995).

However, the mole-rats have efficient calcium absorption despite unclear

cellular and molecular mechanisms. The duodenal calcium absorption is

paracellular, whereas the transcellular active calcium absorption is found only

in the cecum and proximal colon (Pitcher & Buffenstein, 1994). The 3-day

oral vitamin D supplementation is not able to enhance calcium absorption in

either foregut orhindgutofmole-rats (Pitcher&Buffenstein, 1995).The sub-

terranean mole-rats appear to compensate for the vitamin D-impoverished

state by depositing extra calcium in the chisel tooth and consuming

calcium-rich plants (Buffenstein, Laundy, Pitcher, & Pettifor, 1995).

8. CONCLUSION AND PERSPECTIVES

Duodenal calcium transport exhibits redundancy in term of calcium

transporter expression, possibly to ensure that dietary calcium uptake is

always adequate to meet calcium demand. For example, a number of duo-

denal transporters, e.g., TRPV5, TRPV6, and Cav1.3, work cooperatively

and complementarily for apical calcium uptake. The redundancy thus

explains as to why the transcellular active calcium transport is not completely

abolished by TRPV6 knockout, calbindin-D9k knockout, or TRPV6/

calbindin-D9k double knockout (Benn et al., 2008). Our group has also

reported that TRPV5/TRPV6 double knockdown is unable to nullify

apical-to-basolateral calcium transport across human intestinal epithelium-

like Caco-2 monolayer (Nakkrasae et al., 2010). Calbindin-D28k-null mice

manifest normal bone and teeth development, suggesting no disturbance to
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calcium transport in the absence of calbindin-D28k (Turnbull et al., 2004).

Therefore, further investigation is required to demonstrate contribution of

each transporter to the total calcium absorption.

The expressions and/or activities of most proteins related to intestinal

calcium absorption in humans and rodents (i.e., TRPV5, TRPV6,

calbindin-D9k, PMCA1b, NCX1, and several claudins) are dependent on

1,25(OH)2D3. Both transcellular (saturable) and paracellular (nonsaturable)

calcium transport are thus markedly stimulated by 1,25(OH)2D3. Unlike the

well-established 1,25(OH)2D3-induced transcellular mechanism, little is

known regarding the cellular and molecular mechanisms of the 1,25

(OH)2D3-induced paracellular calcium transport, especially in humans

and nonhuman primates. Furthermore, the vitamin D-independent calcium

absorption is evident under certain conditions, such as neonatal period, but

responsible endocrine and paracrine regulators remain to be investigated.

Species bias—i.e., information is mainly from human, rodent, and

chick—precludes drawing a solid conclusion that 1,25(OH)2D3 is the

utmost important regulator of intestinal calcium transport in avian andmam-

malian species. Data from foregut fermenters (e.g., dairy cow), horses, and

rabbits are scant although some species (e.g., rabbits) have been postulated to

possess similar calcium metabolism and 1,25(OH)2D3-dependent intestinal

calcium absorption as in humans and rodents (Norris, Pettifor, Gray, &

Buffenstein, 2001).

Indeed, duodenum is not the only site of calcium absorption, but it has

been intensively studied due to its vigorous active calcium transport, calcium

transport efficiency, and vitamin D responsiveness as well as abundance

of calcium transporter expression (Lee et al., 1981; Teerapornpuntakit,

Dorkkam, Wongdee, Krishnamra, & Charoenphandhu, 2009; Wasserman,

2004). Most absorbable dietary calcium (>80% of absorbed calcium) is

transported by the jejunum and ileum (lower transport rate but greater

sojourn time of 40–50 min compared to the duodenal sojourn time of

2–3 min) using the paracellular passive transport rather than the transcellular

active transport (Duflos et al., 1995; Wasserman, 2004). In normal rats, the

cecum—the most proximal part of the large intestine—absorbs calcium at

a higher rate than the duodenum (>2-fold), and surgical removal of cecum

(cecectomy) leads to fecal calcium wasting, compensatory increase in colonic

calcium transport, and osteopenia (Charoenphandhu, Suntornsaratoon,

Jongwattanapisan, Wongdee, & Krishnamra, 2012; Jongwattanapisan

et al., 2012). Calcium transport in the distal small intestine and large intestine

(cecum and colon) is also 1,25(OH)2D3-dependent (Grinstead, Pak, &
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Krejs, 1984; Karbach, 1991; Karbach & Feldmeier, 1993; Lee et al., 1981).

However, exogenous 1,25(OH)2D3 cannot further increase cecal calcium

transport (Karbach & Feldmeier, 1993). Intraperitoneal 1,25(OH)2D3 injec-

tion was found to similarly increase dietary calcium uptake in intact and

cecectomized vitamin D-replete male rats (Brommage, Binacua, & Carrié,

1995), suggesting that 1,25(OH)2D3 is not the main regulator of cecal cal-

cium absorption. Hence, the underlying molecular mechanisms and endo-

crine regulatory axes as well as paracrine/autocrine regulation of calcium

absorption in the intestinal segments distal to the duodenum are important

issues worth exploring.
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